Electrical characterization of magnetoelectrical materials


A brief review is given of electrical properties of magnetoelectric, multiferroic materials, with emphasis on magnetocapacitance effects, nanostructures, integration into real random access memories, and critical phenomena, including defect dynamics near phase transitions.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18


  1. 1

    G.A. Smolenskii: Fiz. Tverd. Tela. 1, 149 1959 in Russian

    Google Scholar 

  2. 2

    B. Jaffe, W.R. Cook H. Jaffe: Piezoelectric Ceramics Techbooks New York [reprint issue] 1989

    Google Scholar 

  3. 3

    W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott N.D. Mathur: Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 2005

    CAS  Article  Google Scholar 

  4. 4

    W. Eerenstein, F.D. Morrison, J.F. Scott, N.D. Mathur: Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87, 101906 2005

    Article  CAS  Google Scholar 

  5. 5

    A. Perrier A.J. Staring: Arch. Sci. Phys. Nat. (Geneva) 4, 373 1922

    Google Scholar 

  6. 6

    A. Perrier A.J. Staring: Arch. Sci. Phys. Nat. (Geneva) 5, 333 1923

    CAS  Google Scholar 

  7. 7

    I.E. Dzyaloshinskii: Zh. Eksp. Teor. Fiz. 10, 628 1959 in Russian

    Google Scholar 

  8. 8

    D.N. Astrov: Zh. Eksp. Teor. Fiz. 11, 1960 in Russian

  9. 9

    A.S. Borovik-Romanov: Zh. Eksp. Teor. Fiz. 11, 1960 in Russian

  10. 10

    S.L. Hou N. Bloembergen: Paramagnetoelectric effects in NiSO4.6H2O Phys. Rev. 138, A1218 1965

    Article  Google Scholar 

  11. 11

    J.F. Scott: Mechanisms of dielectric anomalies in BaMnF4. Phys. Rev. B16, 2329 1977

    Article  Google Scholar 

  12. 12

    A.M. Glass, M.E. Lines, M. Eibschutz, F.S.L. Hsu, H.J. Guggenheim: Observation of anomalous pyroelectric behavior in BaNiF4 due to cooperative magnetic singularity. Commun. Phys. 2, 103 1977

    CAS  Google Scholar 

  13. 13

    G.A. Samara, J.F. Scott: Dielectric anomalies in BaMnF4 at low-temperatures. Solid State Commun. 21, 167 1977

    CAS  Article  Google Scholar 

  14. 14

    J.F. Scott: Phase-transitions in BaMnF4. Rep. Prog. Phys. 42, 1055 1979

    CAS  Article  Google Scholar 

  15. 15

    D.L. Fox J.F. Scott: Ferroelectrically induced ferromagnetism. J. Phys. C: Solid State Phys. 10, L329 1977

    CAS  Article  Google Scholar 

  16. 16

    G. Catalan: Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 2006

    Article  CAS  Google Scholar 

  17. 17

    T. Egami: Giant dielectric permittivity and magnetocapacitance in La0.875Sr0.125MnO3 single crystals in Proceedings of the International Workshop on Fundamentals of Ferroelectricity, (Williamsburg, VA, March 2006)

  18. 18

    D. Starešinić, P. Lunkenheimer, J. Hemberger, K. Biljaković A. Loidl: Giant dielectric response in the one-dimensional charge-ordered semiconductor (NbSe4)3I. Phys. Rev. Lett. 96, 046402 2006

    Article  CAS  Google Scholar 

  19. 19

    P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, A. Loidl: Relaxation dynamics and colossal magnetocapacitive effect in CdCr2S4. Phys. Rev. B 72, 60103 2005

    Article  CAS  Google Scholar 

  20. 20

    S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan A. Loidl: Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4. Phys. Rev. Lett. 96, 157202 2006

    CAS  Article  Google Scholar 

  21. 21

    J. Hemberger, P. Lunkenheimer, R. Fichtl, H-A. Krug von Nidda, V. Tsurkan A. Loidl: Multiferroic behavior in CdCr2X4 (X = S, Se). Nature 434, 364 2005

    CAS  Article  Google Scholar 

  22. 22

    C.J. Fennie K.M. Rabe: Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles. Phys. Rev. B: Solid State 72, 214123 2005 K.M. Rabe: (private communication, 2006)

    Article  CAS  Google Scholar 

  23. 23

    G. Catalan J.F. Scott: Comment on “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4” (arxiv/ cond-mat/0607500, 2006)

    Google Scholar 

  24. 24

    C. Kittel: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 1946

    CAS  Article  Google Scholar 

  25. 25

    L.D. Landau E. Lifshitz: Phys. Z. Sov. Union 8, 1935 in Russian

  26. 26

    R.J. Harrison, R.E. Dunin-Borkowski A. Putnis: Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl. Acad. Sci. U.S.A. 99, 16556 2002

    CAS  Article  Google Scholar 

  27. 27

    N.D. Mermin: Topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 1979

    CAS  Article  Google Scholar 

  28. 28

    F. De Guerville, I.A. Luk’yanchuk L. Lahoche: Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng., B 120, 16 2005

    Article  CAS  Google Scholar 

  29. 29

    V.A. Stephanovich, I.A. Luk’yanchuk M.G. Karkut: Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys. Rev. Lett. 94, 047601 2005

    CAS  Article  Google Scholar 

  30. 30

    J.F. Scott: Nano-ferroelectrics: Statics and dynamics. J. Phys.: Condens. Matter 18, R361 2006

    CAS  Google Scholar 

  31. 31

    N. Floquet C. Valot: Ferroelectric domain walls in BaTiO3: Structural wall model interpreting fingerprints in XRPD diagrams. Ferroelectrics 234, 107 1999

    CAS  Article  Google Scholar 

  32. 32

    N. Floquet, C.M. Valot, M.T. Mesnier: Ferroelectric domain walls in BaTiO3: Fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Phys. III (Paris) 7, 1105 1997

    CAS  Google Scholar 

  33. 33

    B. Meyer D. Vanderbilt: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 2002

    Article  CAS  Google Scholar 

  34. 34

    K. Kawano, H. Kosuge, N. Oshima H. Funakubo: Conformability of ruthenium dioxide films prepared on substrates with capacitor holes by MOCVD and modification by annealing. Electrochem. Solid-State Lett. 9, C175 2006

    CAS  Article  Google Scholar 

  35. 35

    M. Miyake, F.D. Morrison, J.F. Scott, T. Tatsuta O. Tsuji: Coating of DRAM trenches with Ru electrodes and PZT dielectric films via misted deposition. Integ. Ferroelectrics. 2007 in press

    Google Scholar 

  36. 36

    X.H. Zhu, P.R. Evans, D. Byrne, A. Schilling, C. Douglas, R.J. Pollard, R.M. Bowman, J.M. Gregg, F.D. Morrison J.F. Scott: Perovskite lead zirconium titanate nanorings: Towards nanoscale ferroelectric “solenoids”? Appl. Phys. Lett. 89, 129913 2006

    Google Scholar 

  37. 37

    M.Y. Gutkin, I.A. Ovid’ko A.G. Sheinerman: Misfit dislocations in wire composite solids. J. Phys.: Condens. Matter 12, 5391 2000

    CAS  Google Scholar 

  38. 38

    A.G. Sheinerman M.Y. Gutkin: Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Phys. Status Solidi A 184, 485 2001

    CAS  Article  Google Scholar 

  39. 39

    S.V. Bobylev, M.Y. Gutkin I.A. Ovid’ko: Nanograins with 90 degrees grain boundaries in high transition temperature superconducting films. J. Phys.: Condens. Matter 15, 7925 2003

    CAS  Google Scholar 

  40. 40

    Y. Luo, I. Szafraniak, V. Nagarajan, R.B. Wehrspohn, M. Steinhart, J.H. Wendorff, N.D. Zakharov, R. Ramesh M. Alexe: Ferroelectric lead zirconate titanate and barium titanate nanotubes Integ. Ferroelectrics 59, 1513 2003

    CAS  Article  Google Scholar 

  41. 41

    R. Ramesh D.D. Ebenezer: Analysis of axially polarized piezoelectric ceramic rings. Ferroelectrics 323, 17 2005

    CAS  Article  Google Scholar 

  42. 42

    R. Ramesh, D.D. Ebenezer: Exact analysis of axially polarized piezoelectric ceramic cylinders with certain uniform boundary conditions. Curr. Sci. 85, 1173 2003

    Google Scholar 

  43. 43

    R. Ramesh, D.D. Ebenezer: Analysis of axially polarized piezoelectric cylinders with arbitrary boundary conditions on flat surfaces. J. Acoust. Soc. Am. 113, 1900 2003

    Article  Google Scholar 

  44. 44

    P. Paruch, T. Giamarchi J-M. Triscone: Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 2004

    Article  CAS  Google Scholar 

  45. 45

    S.V. Kalinin: private communication 2006

  46. 46

    W. Kleemann, J. Dec, S.A. Prosandeev, T. Braun P.A. Thomas: Universal domain wall dynamics in ferroelectrics and relaxors. Ferroelectrics 334, 3 2006

    CAS  Article  Google Scholar 

  47. 47

    J.F. Scott: Absence of true critical exponents in relaxor ferroelectrics: The case for defect dynamics. J. Phys.: Condens. Matter 18, 7123 2006

    CAS  Google Scholar 

  48. 48

    J.R. Macdonald: Impedance Spectroscopy Wiley New York 1987

    Google Scholar 

  49. 49

    P. Curie: Ann. Chim. Phys. 18, 203 1889 E. von Schweidler: Ann. Phys., 711 1907

    Google Scholar 

  50. 50

    A.I. Larkin D.E. Khmelnitskii: Zh. Eksp. Teor. Fiz. 56, 1969 in Russian

  51. 51

    A.P. Levanyuk A.S. Sigov: Izv. Akad. Nauk SSSR Ser. Fiz. 43, 1979 in Russian

  52. 52

    Y. Imry M. Wortis: Influence of quenched impurities on 1st-order phase transitions. Phys. Rev., B 19, 3580 1979

    CAS  Article  Google Scholar 

  53. 53

    T.W. Ryan, R.J. Nelmes, R.A. Cowley A. Gibaud: Observation of two length scales for the critical fluctuations of RbCaF3. Phys. Rev. Lett. 56, 2704 1986

    CAS  Article  Google Scholar 

  54. 54

    Y.M. Kishinetz, A.P. Levanyuk, A.I. Morosov A.S. Sigov: Dislocation- induced anomalies of physical properties of crystals near structural phase transitions. Ferroelectrics 79, 321 1988

    Article  Google Scholar 

  55. 55

    A.I. Murosov, A.S. Sigov: Influence of defects on phase transitions. Comments Condens. Matt. Phys. 18, 279 1998

    Google Scholar 

  56. 56

    V.L. Ginzburg, A.A. Gorbatsevich, Y.V. Kopaev: On the problem of superdiamagnetism. Solid State Commun. 50, 339 1984

    CAS  Article  Google Scholar 

  57. 57

    D.G. Sannikov: A sequence of two ferrotoroidal phase transitions in nickel-bromine boracite Ni3B7O13Br. JETP Lett. 73, 401 2001 Dynamics of domain wall in ferrotoroic phase of boracites. Ferroelectrics, 163 2003

    CAS  Article  Google Scholar 

  58. 58

    D.G. Sannikov, I.S. Zheludev: Possibility of phase transition with spontaneous toroidal moment formation in nickel boracites. Sov. Phys. Solid State 27, 826 1985

    Google Scholar 

  59. 59

    V.M. Dubovik V.V. Tugushev: Toroid moments in electrodynamics and solid- state physics. Phys. Rep. 187, 145 1990

    Article  Google Scholar 

  60. 60

    H. Schmid: On ferrotoroids and electrotoroidic, magnetotoroidic and piezotoroidic Effects. Ferroelectrics 252, 41 2001

    CAS  Article  Google Scholar 

  61. 61

    M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 2005

    CAS  Article  Google Scholar 

  62. 62

    W. Eerenstein, N.D. Mathur, J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 2006

    CAS  Article  Google Scholar 

  63. 63

    I. Naumov, L. Bellaiche H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 2004

    CAS  Article  Google Scholar 

  64. 64

    J.F. Scott: Ferroelectrics: Novel geometric ordering of ferroelectricity. Nat. Mater. 4, 13 2005

    CAS  Article  Google Scholar 

  65. 65

    I. Ponomarevna, I. Naumov L. Bellaiche: Low-dimensional ferroelectrics under different electrical and mechanical boundary conditions: Atomistic simulations. Phys. Rev. B 72, 214118 2005

    Article  CAS  Google Scholar 

  66. 66

    I. Ponomareva, I. Naumov, I. Kornev, H. Fu L. Bellaiche: Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys. Rev. B 72, 140102 2005

    Article  CAS  Google Scholar 

  67. 67

    S. Prosandeev, I. Ponomareva, I. Kornev, I. Naumov L. Bellaiche: Controlling toroidal moment by means of an inhomogeneous static field: An ab initio study. Phys. Rev. Lett. 96, 237601 2006

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J.F. Scott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott, J. Electrical characterization of magnetoelectrical materials. Journal of Materials Research 22, 2053–2062 (2007). https://doi.org/10.1557/jmr.2007.0260

Download citation