Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties

Abstract

A monodisperse spherical Y2O3:Eu3+ phosphor was prepared by a homogeneous precipitation method. The mean size of the phosphor particles (MSPP) was successfully controlled by changing the volume ratio of normal alcohol (RA) (propanol) in the solvents mixed between deionized water and normal propanol. When the RA was increased from 0 to 0.7, the MSPP decreased while maintaining a high yield of >95%. Although the prepared phosphor samples were fired at the same temperature, the thermal energy was delivered more efficiently into the inner side of the phosphor particles with the decrease of the MSPP. Therefore, the crystallinity and also the photoluminescence (PL) intensity of the phosphor increased with the decrease in the MSPP. In addition, because the numbers of Eu3+ ions located near the particle surfaces increased with the decrease of particle size, the ratio of PL intensity caused by the 5D07F2 transition to that caused by 5D07F1 transition increased from 10.8 to 12.7 with the decrease in MSPP.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
TABLE II.
FIG. 5
FIG. 6

References

  1. 1

    G.Y. Hong, B.S. Jeon, Y.K. Yoo J.S. Yoo: Photoluminescence characteristics of spherical Y2O3:Eu phosphors by aerosol pyrolysis. J. Electrochem. Soc. 148, H161 2001

    CAS  Article  Google Scholar 

  2. 2

    S.H. Cho, J.S. Yoo J.D. Lee: A new synthetic method to prepare spherical phosphors for emissive screen applications. J. Electrochem. Soc. 145, 1017 1998

    CAS  Article  Google Scholar 

  3. 3

    J.S. Yoo J.D. Lee: The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor. J. Appl. Phys. 81, 2810 1997

    CAS  Article  Google Scholar 

  4. 4

    L.D. Vila, E.B. Stucchi M.R. Davolos: Preparation and characterization of uniform, spherical particles of Y2O2S and Y2O2S. Eur. J. Mater. Chem. 7, 2113 1997

    Article  Google Scholar 

  5. 5

    A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver A. Newport: Engineering phosphors for field emission displays. J. Vac. Sci. Technol., B 17, 750 1999

    CAS  Article  Google Scholar 

  6. 6

    X. Jing, T. Ireland, C. Gibbons, D.J. Barber, J. Silver, A. Vecht G. Fern: Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J. Electrochem. Soc. 146, 4654 1999

    CAS  Article  Google Scholar 

  7. 7

    T. Hirai, T. Hiranoa I. Komasawa: Preparation of Y2O3:Eu3+ phosphor fine particles using an emulsion liquid membrane system. J. Mater. Chem. 10, 2306 2000

    CAS  Article  Google Scholar 

  8. 8

    G. Wakefield, E. Holland, P.J. Dobson J.L. Hutchison: Luminescence properties of nanocrystalline Y2O3:Eu. Adv. Mater. 13, 1557 2001

    CAS  Article  Google Scholar 

  9. 9

    G.Y. Hong, K. Yoo, S.J. Moon J.S. Yoo: Enhancement of luminous intensity of spherical Y2O3:Eu phosphors using flux during aerosol pyrolysis. J. Electrochem. Soc. 150, H67 2003

    CAS  Article  Google Scholar 

  10. 10

    Y.C. Kang, H.S. Roh S.B. Park: Preparation of Y2O3:Eu phosphor particles of filled morphology at high precursor concentrations by spray pyrolysis. Adv. Mater. 12, 451 2000

    CAS  Article  Google Scholar 

  11. 11

    A. Camenzind, R. Strobel S.E. Pratsinis: Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chem. Phys. Lett. 415, 193 2005

    CAS  Article  Google Scholar 

  12. 12

    D. Sordelet M. Akinc: Preparation of spherical, monosized Y2O3 precursor particles. J. Colloid Interface Sci. 122, 47 1988

    CAS  Article  Google Scholar 

  13. 13

    G. Cao: Nanostructures and Nanomaterials Imperial College Press, London 2004

    Google Scholar 

  14. 14

    A.C. Pierre: Introduction to Sol-Gel Processing Kluwer Academic Publishers, London 1998

    Google Scholar 

  15. 15

    J. Silver, T.G. Ireland R. Withnall: Fine control of the dopant level in cubic Y2O3:Eu3+ phosphors. J. Electrochem. Soc. 151, H66 2004

    CAS  Article  Google Scholar 

  16. 16

    Y.D. Jiang, Z.L. Wang, F. Zhang, H.G. Paris C.J. Summers: Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique. J. Mater. Res. 13, 2950 1998

    CAS  Article  Google Scholar 

  17. 17

    H.I. Chen H.Y. Chang: Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf., A 242, 61 2004

    CAS  Article  Google Scholar 

  18. 18

    C.S. Fang Y.W. Chen: Preparation of titania particles by thermal hydrolysis of TiCl4 in n propanol solution. Mater. Chem. Phys. 78, 739 2003

    CAS  Article  Google Scholar 

  19. 19

    H.K. Park, D.K. Kim C.H. Kim: Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J. Am. Ceram. Soc. 80, 743 1997

    CAS  Article  Google Scholar 

  20. 20

    M.Z.C. Hu, E.A. Payzant C.H. Byers: Sol-gel and ultrafine particle formation via dielectric tuning of inorganic salt-alcohol-water solutions. J. Colloid Interface Sci. 222, 20 2000

    CAS  Article  Google Scholar 

  21. 21

    J.Y. Choi D.K. Kim: Preparation of monodisperse and spherical powders by heating of alcohol-aqueous salt solutions. J. Sol.-Gel Sci. Technol. 15, 231 1999

    CAS  Article  Google Scholar 

  22. 22

    F. Franks: Water: A Comprehensive Treatise Plenum Press, New York 1973

    Google Scholar 

  23. 23

    J.N. Israelachvili: Intermolecular and Surface Forces Academic Press, London 1992

    Google Scholar 

  24. 24

    Z. Hu, G. Oskam P.C. Searson: Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 263, 454 2003

    CAS  Article  Google Scholar 

  25. 25

    M. Haruta B. Delmon: Preparation of homodisperse solids. J. Chem. Phys. 83, 859 1986

    CAS  Google Scholar 

  26. 26

    W. Zhang, M. Xu, W. Zhang, M. Yin, Z. Qi, S. Xia C. Garapon: Site-selective spectra and time-resolved spectra of nanocrystalline Y2O3:Eu. Eur. Chem. Phys. Lett. 376, 318 2003

    CAS  Article  Google Scholar 

  27. 27

    S.H. Byeon, M.G. Ko, J.C. Park D.K. Kim: Low-temperature crystallization and highly enhanced photoluminescence of Gd2–xYxO3:Eu3+ by Li doping. Chem. Mater. 14, 603 2002

    CAS  Article  Google Scholar 

  28. 28

    P. Scardi M. Leoni: Fourier modeling of the anisotropic line broadening of x-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 32, 671 1999

    CAS  Article  Google Scholar 

  29. 29

    B.R. Judd: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 1962

    CAS  Article  Google Scholar 

  30. 30

    G.S. Ofelt: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 1962

    CAS  Article  Google Scholar 

  31. 31

    G. Blasse B.C. Grabmaier: Luminescent Materials Springer-Verlag, Berlin 1994

    Google Scholar 

  32. 32

    Z.G. Wei, L.D. Sun, C.S. Liao, X.C. Jiang C.H. Yan: Synthesis and size dependent luminescent properties of hexagonal (Y,Gd)BO3:Eu nanocrystals. J. Mater. Chem. 12, 3665 2002

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duk Young Jeon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoo, H.S., Jang, H.S., Im, W.B. et al. Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties. Journal of Materials Research 22, 2017–2024 (2007). https://doi.org/10.1557/jmr.2007.0257

Download citation