Wüstite nanocrystals: Synthesis, structure and superlattice formation

Abstract

Monodisperse ligand-capped cubic wüstite FexO nanocrystals were prepared by a novel thermal decomposition method of iron (II) acetate in the presence of oleic acid as the surfactant. Controlled size distributions of cubic nanoparticles possessing the rock salt crystal structure were isolated in the range 10–18 nm. The influence of molar ratio of surfactant to precursor was investigated to understand size control and monodispersity. Using inexpensive, nontoxic metal salts as reactants, we were able to synthesize gram-scale quantities of relatively monodisperse nanocrystals in a single reaction, without further size selection, characterized by x-ray diffraction and transmission electron microscopy. The procedure enables the collection of samples of uniform size as a function of time, thus permitting a preliminary solid-state kinetic analysis of the reaction as a function of increasing particle size. Following controlled evaporation from nonpolar solvents, self-assembly into two-dimensional arrays, three-dimensional single-component superlattices, and binary superlattices with gold nanoparticles were observed and characterized.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE I.
FIG. 6
FIG. 7

References

  1. 1

    S. O’Brien, C.B. Murray L.E. Brus: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 2001

    Article  Google Scholar 

  2. 2

    J. Park, K. An, Y. Hwang, J-G. Park, H-J. Noh, J-Y. Kim, J-H. Park, N-M. Hwang T. Hyeon: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 2004

    CAS  Article  Google Scholar 

  3. 3

    N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti M. Niederberger: Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17, 3044 2005

    CAS  Article  Google Scholar 

  4. 4

    R.M. Cornell U. Schwertmann: The Iron Oxides John Wiley & Sons: New York 1997

    Google Scholar 

  5. 5

    S. Sun H. Zeng: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002

    CAS  Article  Google Scholar 

  6. 6

    R.S. Andreas Jordan, P. Wust, H. Fähling R. Felix: Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413 1999

    Article  Google Scholar 

  7. 7

    D.K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke M. Muhammed: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256 2001

    CAS  Article  Google Scholar 

  8. 8

    M. Yin S. O’Brien: Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125, 10180 2003

    CAS  Article  Google Scholar 

  9. 9

    M. Yin, C-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu S. O’Brien: Copper oxide nanocrystals, J. Am. Ceram. Soc. 127, 9506 2005

    CAS  Google Scholar 

  10. 10

    M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark S. O’Brien: Zinc oxide quantum rods. J. Am. Ceram. Soc. 126, 6206 2004

    CAS  Google Scholar 

  11. 11

    S. Nagakura, T. Ishiguro Y. Nakamura: Structure of Wuestite Observed by UHV-HR-1 MV Electron Microscope, Dept. Metall., Tokyo Inst. Technol., Tokyo, Japan. 1983

    Google Scholar 

  12. 12

    M.J. Radler: X-ray and Neutron Diffraction Studies of the Defect Structure of Wuestite and Manganosite Northwestern University, Evanston, IL 1990 407

    Google Scholar 

  13. 13

    J. R. Gavarri, C. Carel D. Weigel: Reexamination of the cluster structure of the P′ and P″ quenched wuestites. C.R. Acad. Sci., Ser. 2 307, 705 1988

    CAS  Google Scholar 

  14. 14

    H. Fjellvag, B.C. Hauback, T. Vogt S. Stolen: Monoclinic nearly stoichiometric wustite at low temperatures. American Mineralogist. 87, 347 2002

    CAS  Article  Google Scholar 

  15. 15

    H. Fjellvag, F. Gronvold, S. Stolen B. Hauback: On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J. Solid State Chem. 124, 52 1996

    CAS  Article  Google Scholar 

  16. 16

    S. Stolen, R. Gloeckner F. Gronvold: Nearly stoichiometric iron monoxide formed as a metastable intermediate in a two-stage disproportionation of quenched wuestite. Thermodynamic and kinetic aspects. Thermochim. Acta 256, 91 1995

    CAS  Article  Google Scholar 

  17. 17

    F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray S.P. O’Brien: Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 126, 14583 2004

    CAS  Article  Google Scholar 

  18. 18

    P. Ayyub, V.R. Palkar, S. Chattopadhyay M. Multani: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135 1995

    CAS  Article  Google Scholar 

  19. 19

    A.B. Herhold, C-C. Chen, C.S. Johnson, S.H. Tolbert A.P. Alivisatos: Structural transformations and metastability in semiconductor nanocrystals. Phase Transitions 68, 1 1999

    CAS  Article  Google Scholar 

  20. 20

    S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray B.R. Ratna: Size-induced transition-temperature reduction in nanoparticles on ZnS. Phys. Rev. B 60, 9191 1999

    CAS  Article  Google Scholar 

  21. 21

    N. Jana, Y. Chen X. Peng: Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 20, 3931 2004

    Article  Google Scholar 

  22. 22

    Y-W. Jun, J-S. Choi J. Cheon: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. Engl. 45, 3414 2006

    CAS  Article  Google Scholar 

  23. 23

    L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun P. Yang: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 2006

    CAS  Article  Google Scholar 

  24. 24

    X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang Y. Qian: One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 2004

    CAS  Article  Google Scholar 

  25. 25

    Y-W. Jun, J-H. Lee, J-S. Choi J. Cheon: Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 109, 14795 2005

    CAS  Article  Google Scholar 

  26. 26

    J. Ding, W.F. Miao, E. Pirault, R. Street P.G. McCormick: Structural evolution of Fe + Fe2O3 during mechanical milling. J. Magn. Magn. Mater. 177, 933 1998

    Article  Google Scholar 

  27. 27

    J. Ding, W.F. Miao, R. Street P.G. McCormick: Fe3O4/Fe magnetic composite synthesized by mechanical alloying. Scripta Mater. 35, 1307 1996

    CAS  Article  Google Scholar 

  28. 28

    T. Hyeon, S.S. Lee, J. Park, Y. Chung H.B. Na: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 2001

    CAS  Article  Google Scholar 

  29. 29

    R.J. Francis, S. O’Brien, A.M. Fogg, P.S. Halasyamani, D. O’Hare, T. Loiseau G. Ferey: Time-resolved in-situ energy and angular dispersive x-ray diffraction studies of the formation of the microporous gallophosphate ULM-5 under hydrothermal conditions. J. Am. Chem. Soc. 121, 1002 1999

    CAS  Article  Google Scholar 

  30. 30

    J.D. Hancock J.H. Sharp: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55, 74 1972

    CAS  Article  Google Scholar 

  31. 31

    http://www.webmineral.com.

  32. 32

    F.X. Redl, K.S. Cho, C.B. Murray S. O’Brien: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968 2003

    CAS  Article  Google Scholar 

  33. 33

    H. Zeng, J. Li, J.P. Liu, Z.L. Wang S. Sun: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395 2002

    CAS  Article  Google Scholar 

  34. 34

    E.V. Shevchenko, D.V. Talapin, S. O’Brien C.B. Murray: Polymorphism in AB(13) nanoparticle superlattices: An example of semiconductor-metal metamaterials. J. Am. Chem. Soc. 127, 8741 2005

    CAS  Article  Google Scholar 

  35. 35

    E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien C.B. Murray: Structural diversity in nanoparticle superlattices. Nature 439, 55 2005

    Article  Google Scholar 

  36. 36

    E.V. Shevchenko, D.V. Talapin, C.B. Murray S. O’Brien: Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 28(11), 3620 2006

    Article  Google Scholar 

  37. 37

    B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen K.J. Klabunde: Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18, 7515 2002

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported primarily by the MRSEC program of the National Science Foundation under award number DMR-0213574, and NSF-CAREER award, DMR-0348938, and relied on equipment supported by the NSEC program of the National Science Foundation under Award Number CHE-0117752, NSF-CHE-04-15516, and by the New York State Office of Science, Technology, and Academic Research (NYSTAR). Partial support was appreciated from the United States Department of Energy, Office of Basic Energy Sciences, through the Catalysis Futures grant DE-FG02-03ER15463.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen O’Brien.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, M., Chen, Z., Deegan, B. et al. Wüstite nanocrystals: Synthesis, structure and superlattice formation. Journal of Materials Research 22, 1987–1995 (2007). https://doi.org/10.1557/jmr.2007.0247

Download citation