Phase and microstructural evolution in polymer-derived composite systems and coatings


Polymer-derived ceramics have shown promise as a novel way to process low-dimensional ceramics such as environmental barrier coatings. Composite coatings have been developed as oxidation and carburization barriers on steel using poly(hydridomethylsiloxane) matrix and titanium disilicide as reactive fillers. A systematic study of the phase transformations and microstructural changes in the coatings and their components during pyrolysis in air is presented here. The system evolves from an amorphous polymer filled with a binary metal at room temperature to an inorganic amorphous network of oxidized silicon and titanium at the target temperature of 800 °C. Crystallization of the composite occurs at higher temperatures to reach cristobalite and rutile by 1600 °C. The polymer-to-ceramic conversion occurs between 200 and 600 °C. The oxidation of the expansion agent and the densification of the composite take place between 300 and 800 °C.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1

    P. Greil: Near-net-shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18, 1905 1998

    CAS  Article  Google Scholar 

  2. 2

    J. Bill D. Heimann: Polymer-derived ceramic coatings on C/C-SiC composites. J. Eur. Ceram. Soc. 16, 1115 1996

    CAS  Article  Google Scholar 

  3. 3

    Y. Abe, K. Kagayama, N. Takamura, T. Gunji, T. Yoshihara N. Takahashi: Preparation and properties of polysilsesquioxanes: Function and characterization of coating agents and films. J. Non-Cryst. Solids 261, 39 2000

    CAS  Article  Google Scholar 

  4. 4

    Y.D. Blum B. Macqueen: Modifications of hydrosiloxane polymers for coatings applications. Surf. Coat. Int. Part B: Coat. Trans. 84(B1), 27 2001

    CAS  Article  Google Scholar 

  5. 5

    P. Colombo, T. Paulson C. Pantano: Synthesis of silicon carbide thin films with polycarbosilane (PCS). J. Am. Ceram. Soc. 80(9), 2333 1997

    CAS  Article  Google Scholar 

  6. 6

    P. Colombo, B. Riccardi, A. Donato G. Scarinci: Joining of SiC/SiC ceramic-matrix composites for fusion reactor blanket applications. J. Nucl. Mater. 278, 127 2000

    CAS  Article  Google Scholar 

  7. 7

    C.A. Lewinsohn, R.H. Jones, P. Colombo B. Riccardi: Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications. J. Nucl. Mater. 307–311, 1232 2002

    Article  Google Scholar 

  8. 8

    M. Stackpoole: Reactive processing and mechanical properties of silicon nitride matrix composites and their use in joining ceramic-matrix composites. Ph.D. Thesis, University of Washington, Seattle, WA, 2002

    Google Scholar 

  9. 9

    S. Yajima: Development of high tensile strength SiC fiber using an organosilicon polymer precursor. Nature 273, 525 1978

    CAS  Article  Google Scholar 

  10. 10

    R. Riedel, M. Seher, J. Mayer D.V. Szabo: Polymer-derived Si-based bulk ceramics: I. Preparation, processing and properties. J. Eur. Ceram. Soc. 15(8), 703 1995

    CAS  Article  Google Scholar 

  11. 11

    R. Riedel W. Dressler: Chemical formation of ceramics. Ceram. Int. 22(3), 233 1996

    CAS  Article  Google Scholar 

  12. 12

    G.D. Soraru, L. Pederiva, J. Latournerie R. Raj: Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J. Am. Ceram. Soc. 85(9), 2181 2002

    CAS  Article  Google Scholar 

  13. 13

    R.J.P. Corriu: Ceramics and nanostructures from molecular precursors. Angew. Chem. 39(8), 1376 2000

    CAS  Article  Google Scholar 

  14. 14

    P. Greil: Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835 1995

    CAS  Article  Google Scholar 

  15. 15

    C. Pantano, A. Singh H. Zhang: Silicon oxycarbide glasses. J. Sol.-Gel. Sci. Technol. 14, 7 1999

    CAS  Article  Google Scholar 

  16. 16

    T. Erny, M. Seibold, O. Jarchow P. Greil: Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis. J. Am. Ceram. Soc. 76(1), 207 1993

    CAS  Article  Google Scholar 

  17. 17

    L-A. Liew, R.A. Saravanan, V.M. Bright, M.L. Dunn, J.W. Daily R. Raj: Processing and characterization of silicon carbon-nitride ceramics: Application of electrical properties towards MEMS thermal actuators. Sens. Actuators, A 103, 171 2003

    CAS  Article  Google Scholar 

  18. 18

    H.D. Akkas, M.L. Ovecoglu M. Tanoglu: Development of Si-O-C based ceramic-matrix composites produced via pyrolysis of a polysiloxane. Key Eng. Mater. 264–268, 961 2004

    Article  Google Scholar 

  19. 19

    J. Zeschky, F. Goetz-Neunhoeffer, J. Neubauer, S.H.J. Lo, B. Kummer, M. Scheffler P. Greil: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361 2003

    CAS  Article  Google Scholar 

  20. 20

    P. Colombo E. Bernardo: Macro- and micro-cellular porous ceramics from preceramic polymers. Compos. Sci. Tech. 63, 2353 2003

    CAS  Article  Google Scholar 

  21. 21

    Y.D. Blum, S.M. Johnson M.I. Gusman: Hydridosiloxanes as precursors to ceramic products, U.S. Patent 5 635 250, June 3, 1997

    Google Scholar 

  22. 22

    J.D. Torrey, R.K. Bordia, C.H. Henager Jr., Y. Blum, Y. Shin W.D. Samuels: Composite polymer derived ceramic system for oxidizing environments. J. Mater. Sci. 41, 4617 2006

    CAS  Article  Google Scholar 

  23. 23

    J.D. Torrey R.K. Bordia: Polymer derived ceramic composite coatings: Processing and characterization of coatings on steel 2006 (submitted for publication)

  24. 24

    ASTM Test Method E1641. Standard test method for decomposition kinetics by thermogravimetry, in ASTM Book of Standards ASTM International, Conshohocken, PA 1994 14.02, 1042

  25. 25

    J.H. Flynn L.A. Wall: A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 4, 323 1966

    CAS  Article  Google Scholar 

  26. 26

    E.M. Levin, C.R. Robbins H.F. McMurdie: Phase Diagrams for Ceramists The American Ceramic Society, Columbus, OH 1964 69

    Google Scholar 

  27. 27

    M. Seibold P. Greil: Thermodynamics and microstructural development of ceramic composite formation by active filler-controlled pyrolysis (AFCOP). J. Eur. Ceram. Soc. 11, (2) 105 1993

    CAS  Article  Google Scholar 

  28. 28

    S.H. Yu, R.E. Riman, S.C. Danforth R.Y. Leung: Pyrolysis of titanium-metal-filled poly(siloxane) preceramic polymer: Effect of atmosphere on pyrolysis product chemistry. J. Am. Ceram. Soc. 78(7), 1818 1995

    CAS  Article  Google Scholar 

  29. 29

    W-C. Liu, C-C. Yang, W-C. Chen, B-T. Dai M-S. Tsai: The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. J. Non-Cryst. Solids 311(3), 233 2002

    CAS  Article  Google Scholar 

  30. 30

    D.R. Lide: Handbook of Chemistry and Physics CRC Press Inc, Boca Raton, FL 1996 9

    Google Scholar 

  31. 31

    L.T. Shi K.N. Tu: Thermogravimetric study of the recovery of oxygen-deficient superconducting YBa2Cu3O7-δ oxides in ambient oxygen. Appl. Phys. Lett. 55, 1351 1989

    CAS  Article  Google Scholar 

  32. 32

    F.N. Schwettmann, R.A. Graff M. Kolodney: Mechanism of the oxidation of titanium disilicide. J. Electrochem. Soc. 118(12), 1973 1971

    CAS  Article  Google Scholar 

  33. 33

    F. D’heurle, E.A., Irene C.Y. Ting: Oxidation of silicide thin films: TiSi2. Appl. Phys. Lett. 42(4), 361 1983

    Article  Google Scholar 

Download references


The authors would like to thank the United States Department of Energy Industrial Technologies Program for financial support (Project No. 25630-A-N4). Special thanks also go to Dr. Charles H. Henager, Jr. (Pacific Northwest National Laboratory) and Dr. Yigal Blum (SRI, Inc.) for their support of this research.

Author information



Corresponding author

Correspondence to Rajendra K. Bordia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torrey, J.D., Bordia, R.K. Phase and microstructural evolution in polymer-derived composite systems and coatings. Journal of Materials Research 22, 1959–1966 (2007).

Download citation