Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system

Abstract

A combined structure/property investigation is performed to understand the catalytic effect of TiF3 additive on the absorption/desorption reactions of MgH2. It was found that both TiH2 and MgF2 phases identified by x-ray diffraction cannot explain the observed kinetic enhancement in the MgH2–TiF3 system, whether they are incorporated in a direct or an in situ manner. In combination with the comparative investigation on the catalytic activity of TiF3 and its analog TiCl3, as well as the samples milled under inert and reactive atmospheres, we propose that the catalytically active species is a multicomponent metastable phase composed of host Mg, transition metal Ti, and F anion, the catalytic activity of which is dependent on its interaction with the surrounding chemical environment.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1

    R.C. Bowman B. Fultz: Metallic hydrides: I. Hydrogen storage and other gas-phase applications. MRS Bull. 27, 688 2002

    CAS  Article  Google Scholar 

  2. 2

    G. Liang, S. Boily, J. Huot, A. Van Neste R. Schulz: Hydrogen absorption properties of a mechanically milled Mg-50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998

    CAS  Article  Google Scholar 

  3. 3

    P. Wang, A.M. Wang, H.F. Zhang, B.Z. Ding Z.Q. Hu: Structural and hydriding properties of composite Mg-ZrFe1.4Cr0.6. Acta Mater. 49, 921 2001

    CAS  Article  Google Scholar 

  4. 4

    A. Zaluska, L. Zaluski J.O. Strm-Olsen: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 1999

    CAS  Article  Google Scholar 

  5. 5

    N. Hanada, T. Ichikawa H. Fujii: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 109, 7188 2005

    CAS  Article  Google Scholar 

  6. 6

    R. Checchetto, N. Bazzanella A. Miotello: Nb clusters formation in Nb-doped magnesium hydride. Appl. Phys. Lett. 87, 061904 2005

    Article  Google Scholar 

  7. 7

    P. Wang, A.M. Wang, H.F. Zhang, B.Z. Ding Z.Q. Hu: Hydrogenation characteristics of Mg-TiO2 (rutile) composite. J. Alloys Compd. 313, 218 2000

    CAS  Article  Google Scholar 

  8. 8

    O. Friedrichs, F. Aguey-Zinsou, J.R. Ares, Fernandez, J.C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann A. Fernandez: MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Mater. 54, 105 2006

    CAS  Article  Google Scholar 

  9. 9

    A.R. Yavari, A. LeMoulec, F.R. de Castro, S. Deledda, O. Friedrichs, W.J. Botta, G. Vaughan, T. Klassen, A. Fernandez A. Kvick: Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition. Scripta Mater. 52, 719 2005

    CAS  Article  Google Scholar 

  10. 10

    G. Liang, J. Huot, S. Boily, A. Van Neste R. Schulz: Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292, 247 1999

    CAS  Article  Google Scholar 

  11. 11

    G. Liang, J. Huot, S. Boily, A. Van Neste R. Schulz: Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J. Alloys Compd. 291, 295 1999

    CAS  Article  Google Scholar 

  12. 12

    N. Hanada, T. Ichikawa, S. Hino H. Fujii: Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5. J. Alloys Compd. 420, 46 2006

    CAS  Article  Google Scholar 

  13. 13

    C.Z. Wu, P. Wang, X.D. Yao, C. Liu, D.M. Chen, G.Q. Lu H.M. Cheng: Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. J. Phys. Chem. B 109, 22217 2005

    CAS  Article  Google Scholar 

  14. 14

    L.P. Ma, P. Wang H.M. Cheng: Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3. J. Alloys Compd. 432, L1 2007

    CAS  Article  Google Scholar 

  15. 15

    B. Bogdanovic M. Schwickardi: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen-storage materials. J. Alloys Compd. 1, 253 1997

    Google Scholar 

  16. 16

    P. Wang C.M. Jensen: Method for preparing Ti-doped NaAlH4 using Ti powder: Observation of an unusual reversible dehydrogenation behavior. J. Alloys Compd. 379, 99 2004

    CAS  Article  Google Scholar 

  17. 17

    P. Wang C.M. Jensen: Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J. Phys. Chem. B 108, 15827 2004

    CAS  Article  Google Scholar 

  18. 18

    P. Wang, X.D. Kang H.M. Cheng: Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J. Phys. Chem. B 109, 20131 2005

    CAS  Article  Google Scholar 

  19. 19

    J.F. Pelletier, J. Huot, M. Sutton, R. Schulz, A.R. Sandy, L.B. Lurio S.G.J. Mochrie: Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Phys. Rev. B: Solid State 63, 052103 2001

    Article  Google Scholar 

  20. 20

    G. Barkhordarian, T. Klassen R. Bormann: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J. Phys. Chem. B 110, 11020 2006

    CAS  Article  Google Scholar 

  21. 21

    S. Isobe, T. Ichikawa, N. Hanada, H.Y. Leng, M. Fichtner, O. Fuhr H. Fujii: Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties. J. Alloys Compd. 404–406, 439 2005

    Article  Google Scholar 

  22. 22

    H.G. Schimmel, J. Huot, L.C. Chapon, F.D. Tichelaar F.M. Mulder: Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J. Am. Chem. Soc. 127, 14384 2005

    Article  Google Scholar 

  23. 23

    A. Zaluska L. Zaluski: New catalytic complexes for metal hydride systems. J. Alloys Compd. 404–406, 706 2005

    Article  Google Scholar 

  24. 24

    I. Barin: Thermochemical Data of Pure Substances, 3rd ed. Wiley-VCH Verlag GmbH, Weinheim, Germany 1995 1006–1008 1088

    Google Scholar 

  25. 25

    P. Patnak: Handbook of Inorganic Chemicals McGraw-Hill, New York 2003 35

    Google Scholar 

  26. 26

    P. Wang, H.F. Zhang, B.Z. Ding Z.Q. Hu: Direct hydrogenation of Mg and decomposition behavior of the hydride formed. J. Alloys Compd. 313, 209 2000

    CAS  Article  Google Scholar 

  27. 27

    J. Wang, A.D. Ebner J.A. Ritter: Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J. Am. Chem. Soc. 128, 5949 2006

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

Financial support for this research from the Hundred Talents Project of the Chinese Academy of Sciences is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, LP., Wang, P., Kang, XD. et al. Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system. Journal of Materials Research 22, 1779–1786 (2007). https://doi.org/10.1557/jmr.2007.0239

Download citation