Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids

Abstract

Fast degradation rates in the physiological environment constitute the main limitation for magnesium alloys used in biodegradable hard tissue implants. In this work, the corrosion behavior of AZ91 magnesium alloy in simulated body fluids (SBF) was systematically investigated to determine its performance in a physiological environment. The influence of the main constituent phases on the corrosion behavior was studied by in situ visual observation and scanning electron microscopy. Energy dispersive x-ray spectrometry and Fourier transfer infrared spectroscopy revealed that both calcium and magnesium phosphates are present in the corroded products besides magnesium oxide. Electrochemical methods including open circuit potential evolution and electrochemical impedance spectroscopy were used to investigate the mechanism. The corresponding electrode controlled processes and evolution of the corrosion products layer were discussed. The degradation rate after immersion in SBF for seven days was calculated from both the weight loss and hydrogen evolution methods.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE III.
FIG. 7

References

  1. 1

    M.P. Staiger, A.M. Pietak, J. Huadmai G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 2006

    CAS  Article  Google Scholar 

  2. 2

    E.D. McBride: Absorbable metal in bone surgery. JAMA 111, 2464 1938

    CAS  Article  Google Scholar 

  3. 3

    J. Verbrugge: The metal material resorbable in osseous surgery. Press Med. 23, 460 1934

    Google Scholar 

  4. 4

    J. Vormann: Magnesium: Nutrition and metabolism. Mol. Aspects Med. 24, 27 2003

    CAS  Article  Google Scholar 

  5. 5

    G.L. Song, A. Atrens, X.L. Wu B. Zhang: Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40, 1769 1998

    CAS  Article  Google Scholar 

  6. 6

    S. Mathieu, C. Rapin, J. Steinmetz P. Steinmetz: A corrosion study of the main constituent phases of AZ91 magnesium alloys. Corros. Sci. 45, 2741 2003

    CAS  Article  Google Scholar 

  7. 7

    D.L. Albright: Relationship of microstructure and corrosion behavior in magnesium alloy ingots and castings in Advances in Magnesium Alloys and Composites, edited by H.G. Paris and W.H. Hunt, (International Magnesium Association and the Non-Ferrous Metals Committee Symp. Proc, TMS, Warrendale, PA, 1988) 57

  8. 8

    G. Baril N. Pébère: The corrosion of pure magnesium in aerated and deaerated sodium sulphate solution. Corros. Sci. 43, 471 2001

    CAS  Article  Google Scholar 

  9. 9

    J. Chen, J. Wang, E. Han, J. Dong W. Ke: Corrosion behavior of AZ91D magnesium alloy in sodium sulfate solution. Mater Corros. 57, 789 2006

    CAS  Article  Google Scholar 

  10. 10

    G. Song, A. Atrens, D. St. John, X. Wu J. Naim: The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39, 1981 1997

    CAS  Article  Google Scholar 

  11. 11

    G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Ttibollet V. Vivier: An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. J. Electrochem. Soc. 154, 108 2007

    Article  Google Scholar 

  12. 12

    G.L. Song A. Atrens: Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 2003

    CAS  Article  Google Scholar 

  13. 13

    H. Kuwahara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi N. Mazaki: Surface reaction of magnesium in Hank’s solutions. Mater. Sci. Forum 350, 349 2000

    Article  Google Scholar 

  14. 14

    H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi T. Aizawa: Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Mater. Trans. 42, 1317 2001

    CAS  Article  Google Scholar 

  15. 15

    H. Kuwahara, N. Mazaki, M. Mabuchi, C. Wein T. Aizawa: Behavior of magnesium in Hank’s solution aimed to trabecular pattern of natural bone. Mater. Sci. Forum 419, 1007 2003

    Article  Google Scholar 

  16. 16

    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth H. Windhagen: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 2005

    CAS  Article  Google Scholar 

  17. 17

    F. Witte, J. Fischer, J. Nellesen, H-A. Crostack, V. Kaese, A. Pisch, F. Beckmann H. Windhagen: In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27, 1013 2006

    CAS  Article  Google Scholar 

  18. 18

    Y.J. Zhang, C.W. Yan, F.H. Wang W.F. Li: Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros. Sci. 47, 2816 2005

    CAS  Article  Google Scholar 

  19. 19

    S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, T. Kitsugi T. Yamamuro: Dependence of apatite formation on silica-gel on its structure—effect of heat-treatment. J. Am. Ceram. Soc. 78, 769 1995

    Article  Google Scholar 

  20. 20

    S.V. Golubev, O.S. Pokrovsky V.S. Savenko: Unseeded precipitation of calcium and magnesium phosphates from modified seawater solutions. J. Cryst. Growth 205, 354 1999

    CAS  Article  Google Scholar 

  21. 21

    J. Weng, Q. Liu, J.G.C. Wolke, X.D. Zhang K. deGroot: Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials 18, 1027 1997

    CAS  Article  Google Scholar 

  22. 22

    L.T. Canham C.L. Reeves: Apatite nucleation on low porosity silicon in acellular simulated body fluid in Thin Films and Surfaces for Bioactivity and Biomedical Applications, edited by C.M. Cotell, A.E. Meyer, S.M. Gorbatkin, and G.L. Grobe III (Mater. Res. Soc. Symp. Proc. 414, Pittsburgh, PA) 1996 189

    Google Scholar 

  23. 23

    C.L. Shao, H.Y. Guan Y.C. Liu: MgO nanofibres via an electrospinning technique. J. Mater. Sci. 41, 3821 2006

    CAS  Article  Google Scholar 

  24. 24

    J.C. Elliot: Structure and chemistry of the apatites and other calcium orthophosphates in Studies in Inorganic Chemistry Vol. 18, Elsevier, Amsterdam 1994 27

    Google Scholar 

  25. 25

    M.F. Morks: Magnesium phosphate treatment for steel. Mater. Lett. 58, 3316 2004

    CAS  Article  Google Scholar 

  26. 26

    L.C. Li, J.C. Gao Y. Wang: Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185, 92 2004

    CAS  Article  Google Scholar 

  27. 27

    B.A. Shaw: Corrosion resistance of magnesium alloys in Corrosion: Fundamentals, Testing and Protection, ASM Handbook Vol. 13a edited by S.D. Cramer and B.S. Covino ASM International, USA 2003 692

    Google Scholar 

  28. 28

    G. Song, A. Atrens, D. St. John, X. Wu J. Nairn: The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39, 1981 1997

    CAS  Article  Google Scholar 

  29. 29

    G.L. Song A. Atrens: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 1999

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The project was supported by City University of Hong Kong Applied Research Grant (ARG) No. 9667002.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guoyi Tang or Paul K. Chu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xin, Y., Liu, C., Zhang, X. et al. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research 22, 2004–2011 (2007). https://doi.org/10.1557/jmr.2007.0233

Download citation