Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation


The nucleation mechanism of deformation-induced martensite was investigated by x-ray diffraction and transmission electron microscope in an ultra-low carbon austenitic stainless steel deformed by equal channel angular pressing at room temperature. It was found that two types of martensite transformation mechanism, stress-assisted and strain-induced, occurred via the sequences of γ (fcc) → ϵ (hcp) → α′ (bcc) and/or γ → α′. In both cases, the crystallographic relationships among γ, ϵ, and α′ followed the Kurdjumov-Sachs orientation relationships: {111}γ //{0001}ϵ //{011}α′ and 〈110〉γ//〈1120̄〉ϵ//〈1̄11〉α′

This is a preview of subscription content, access via your institution.


  1. 1.

    K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, and Y. Brechet: Strengthening via the formation of strain-induced martensite in stainless steels. Mater. Sci. Eng., A 387–389, 873 (2004).

    Article  Google Scholar 

  2. 2.

    A. Goldberg and K.G. Hoge: Effect of strain rate on tension and compression stress-strain behavior in a TRIP alloy. Mater. Sci. Eng. 13, 211 (1974).

    CAS  Article  Google Scholar 

  3. 3.

    G.B. Olson and M. Cohen: A mechanism for the strain-induced nucleation of martensitic transformations. J. Less-Common Metals 28, 107 (1972).

    CAS  Article  Google Scholar 

  4. 4.

    P.C. Maxwell, A. Goldberg, and J.C. Shyne: Stress-assisted and strain-induced martensites in Fe-Ni-C alloys. Metall. Trans. 5, 1305 (1974).

    CAS  Article  Google Scholar 

  5. 5.

    P.L. Mangonon and G. Thomas: The martensite phases in 304 stainless steel. Metall. Trans. 1, 1577 (1970).

    CAS  Article  Google Scholar 

  6. 6.

    J.Y. Choi and W. Jin: Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scripta Mater. 36, 99 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    R.Z. Valiev, R.K. Islamgalie, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    C.X. Huang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    H.C. Shin, T.K. Ha, W.J. Park, and Y.W. Chang: Deformation-induced martensitic transformation under various deformation modes. Key. Eng. Mater. 233, 667 (2003).

    Article  Google Scholar 

  10. 10.

    S.S.M Tavares, D. Gunderov, V. Stolyarov, and J.M. Neto: Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel. Mater. Sci. Eng., A 358, 32 (2003).

    Article  Google Scholar 

  11. 11.

    Y. Ivanisenko, I. Maclaren, X. Sauvage, R.Z. Valiev, and H.J. Fecht: Shear-induced α → γ transformation in nanoscale Fe-C composite. Acta Mater. 54, 1659 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, G.Y. Li, and S.X. Li: Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. J. Mater. Res. 21, 1687 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    V.M. Segal: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157 (1995).

    Article  Google Scholar 

  15. 15.

    J.A. Venables: The martensite transformation in stainless steel. Philos. Mag. 7, 35 (1962).

    Article  Google Scholar 

  16. 16.

    L. Remy and A. Pineau: Observation of stacked layers of twins and ɛ martensite in a deformed austenitic stainless steel. Metall. Trans. 5, 963 (1974).

    CAS  Article  Google Scholar 

  17. 17.

    G.B. Olson and M. Cohen: A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall. Trans. A 7, 1897 (1976).

    Google Scholar 

  18. 18.

    H. Fujita and S. Ueda: Stacking faults and f.c.c. (γ) → h.c.p. (ɛ) transformation in 18/8-type stainless steel. Acta Metall. 20, 759 (1972).

    CAS  Article  Google Scholar 

  19. 19.

    G.V. Kurdjumov and G. Sachs: Over the mechanisms of steel hardening. Z. Phys. 64, 325 (1930).

    Article  Google Scholar 

  20. 20.

    K.P. Staudhammer, L.E. Murr, and S.S. Hecker: Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: A transmission electron microscope study. Acta Metall. 31, 267 (1983).

    CAS  Article  Google Scholar 

  21. 21.

    L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study. Metall. Trans. A 13, 627 (1982).

    CAS  Article  Google Scholar 

  22. 22.

    W.S. Lee and C.F. Lin: The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scripta Mater. 43, 777 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    G.B. Olson and M. Cohen: A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformation. Metall. Trans. A 7, 1905 (1976).

    Google Scholar 

  24. 24.

    H.S. Kim, S.I. Hong, and M.H. Seo: Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing. J. Mater. Res. 16, 856 (2001).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to C. X. Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, C.X., Yang, G., Gao, Y.L. et al. Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation. Journal of Materials Research 22, 724–729 (2007).

Download citation