Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotubes: In situ Raman scattering


The in situ Raman spectroscopy technique was used to investigate the ion transport and to determine the concomitant electrochemical tuning of Fermi level in single-wall carbon nanotubes. The variation of structural bonding in a single-wall carbon nanotube bundle dipped in aqueous alkaline earth halide electrolyte such as CaCl2 with electrochemical biasing was monitored. This is because Raman scattering can detect changes in C–C bond length through radial breathing mode (RBM) at ≈184 cm−1, which varies inversely with the nanotube diameter and the G band at ≈1590 cm−1, varying with the axial bond length. Consistent reversible and substantial variation in Raman intensity of both modes was induced by electrode potential point at the fine and continuous tuning (alternatively, emptying/depleting or filling) of the specific bonding and anti-bonding molecular states. Qualitatively, the results were explained in terms of changes in the energy gap occurring between the one-dimensional van Hove singularities present in the electron density of states, possibly arising due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. We estimated the extent of variation of the absolute potential of the Fermi level and overlap integral (γ0) between the nearest-neighbor carbon atoms by modeling the electrochemical potential dependence of Raman intensity. Observations also suggested that the work function of the tube becomes larger for the metallic nanotubes in contrast to the simultaneously present semiconducting nanotubes.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, and P.M. Ajayan: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    G. Sun, M. Nicklaus, and M. Kertesz: Dekker Encyclopedia of Nanoscience and Nanotechnology (New York, 2004), p. 3605.

    Google Scholar 

  3. 3.

    M.M.J Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    B. Gao, A. Kelinhammes, X.P. Tang, C. Bower, Y. Wu, and O. Zhou: Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J. Liu, G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y. Shon, T.R. Lee, D.T. Colbert, and R.E. Smalley: Fullerene pipes. Science 280, 1253 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyappan: Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3, 597 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    C.L. Cheung, J.H. Hafner, and C.M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 97, 3809 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    S. Gupta, M.H. Hughes, A.H. Windle, and J. Robertson: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95, 2038 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    M. Hughes, M.S.P Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, and A.H. Windle: Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14, 382 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    J.C. Charlierand Ph. Lambin: Electronic structure of carbon nanotubes with chiral symmetry. Phys. Rev. B 57, R15037 (1998).

    Article  Google Scholar 

  11. 11.

    G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth: Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998).

    Article  Google Scholar 

  13. 13.

    T.W. Odom, J.L. Huang, P. Kim, and C.M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).

    Article  Google Scholar 

  15. 15.

    D. Lovall, M. Buss, E. Graugnard, R.P. Andres, and R. Reifenberger: Electron emission and structural characterization of a rope of single-walled carbon nanotubes. Phys. Rev. B 61, 5683 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou: Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 76, 4007 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    M. Shiraishiand M. Alta: Work function of carbon nanotubes. Carbon 39, 1913 (2001).

    Article  Google Scholar 

  18. 18.

    C.L. Kaneand E.J. Mele: Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997).

    Article  Google Scholar 

  19. 19.

    Y. Wada: New Horizon in Low-dimensional Electron Systems, Physics and Chemistry of Material with Low-dimensional structures edited by H. Aoki, M. Tsukada, M. Schluter, F. Levy (Kluwer Academic, Boston, MA, 1991), pp. 415–432.

  20. 20.

    M.S. Dresselhausand P.C. Eklund: Phonons in carbon nanotubes. Adv. Phys. 49, 705 (2000).

    Article  Google Scholar 

  21. 21.

    M.R. Falvo, G.J. Curry, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, and R. Superfine: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz: Carbon nanotube actuators. Science 284, 1340 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    J.E. Huber, N.A. Fleck, and M.F. Ashby: The selection of mechanical actuators based on performance indices. Proc. R. Soc. London, Ser. A 453, 2185 (1997).

    Article  Google Scholar 

  24. 24.

    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, and T. Thio: Electrical conductivity of individual carbon nanotubes. Nature 382, 54 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    M.S. Dresselhausand G. Dresselhaus: Light scattering in graphite intercalation compounds, in Topics in Applied Physics Series, Vol. 53, edited by M. Cardonaand G. Güntherodt (Springer-Verlag, Berlin, Germany, 1982), p. 3.

    Google Scholar 

  26. 26.

    S. Gupta, M. Hughes, A.H. Windle, and J. Robertson: In situ Raman spectro- electrochemistry study of single-wall carbon nanotube mat. Diamond Relat. Mater. 13, 1314 (2003).

    Article  CAS  Google Scholar 

  27. 27.

    W. Zhou, J. Vavro, N.M. Nemes, J.E. Fischer, F. Borondics, K. Kamarás, and D.B. Tanner: Charge transfer and Fermi level shift inp -doped single-walled carbon nanotubes. Phys. Rev. B 71, 205423 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    S. Kazaoui, N. Minami, H. Kataura, and Y. Achiba: Electronic Properties of Novel Materials—Molecular Nanostructures, edited by H. Kuzmanyand S. Roth (AIP Conf. Proc. 544, AIP, New York, 2000), pp. 400–403.

  29. 29.

  30. 30.

    P.R. Gill, W. Murray, and M.H. Wright: The Levenberg-Marquardt Method, Sec. 4.7.3, in Practical Optimization (Academic Press, London, UK, 1981), pp. 136–137.

    Google Scholar 

  31. 31.

    A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M.S. Dresselhaus: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, and R.E. Smalley: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    S. Reich, C. Thomsen, and P. Ordejón: Elastic properties of carbon nanotubes under hydrostatic pressure. Phys. Rev. B 65, 3407 (2002).

    Google Scholar 

  34. 34.

    J. Sandler, M.S.P Shaffer, A.H. Windle, M.P. Halsall, M.A. Montes-Morán, C.A. Cooper, and R.J. Young: Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Phys. Rev. B 67, 035417 (2003).

    Article  CAS  Google Scholar 

  35. 35.

    C.P. An, Z.V. Zardeny, Z. Iqbal, G. Spinks, R.H. Baughman, and A. Zakhidov: Raman scattering study of electrochemically doped single wall nanotubes. Synth. Met. 116, 411 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    L. Kavan, P. Rapta, L. Dunsch, M. J. Bronikowski, P. Willis, and R. E. Smalley: Electrochemical tuning of electronic structure of single-walled carbon nanotubes: In-situ Raman and vis-NIR study. J. Phys. Chem. 105 B,10764 (2001).

    Article  CAS  Google Scholar 

  37. 37.

    G.S. Duesburg: unpublished results.

  38. 38.

    K. Murakoshiand K. Okazaki: Electrochemical potential control of isolated single-walled carbon nanotubes on gold electrode. Electrochem. Acta 50, 3069 (2005).

    Article  CAS  Google Scholar 

  39. 39.

    W.H. Robertsonand M.A. Johnson: Molecular aspects of halide ion hydration: The cluster approach. Ann. Rev. Phys. Chem. 54, 173 (2003).

    Article  CAS  Google Scholar 

  40. 40.

    B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Basca, J.P. Salvetat, and L. Forro: Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Phys. Rev. B 61, R2468 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    S. Kazaoui, N. Minami, N. Matsuda, H. Kataura, and Y. Achiba: Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance. Appl. Phys. Lett. 78, 3433 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    S. Trasatti: The concept of absolute electrode potential, an attempt at a calculation. J. Electroanal. Chem. 52, 313 (1974).

    CAS  Article  Google Scholar 

  43. 43.

    R. Parsons: Standard Potentials in Aqueous Solution, edited by A.J. Bard, R. Parsonsand J. Jordan (Marcel Dekker, New York and Basel, 1985).

  44. 44.

    S. Ghosh, A.K. Sood, and C.N.R Rao: Electrochemical tuning of band structure of single-walled carbon nanotubes probed by in situ resonance Raman scattering. J. Appl. Phys. 92, 1165 (2002).

    CAS  Article  Google Scholar 

  45. 45.

    K. Okazaki, Y. Nakato, and K. Murakoshi: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003).

    Article  CAS  Google Scholar 

  46. 46.

    A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, and R.E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257 (1997).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S. Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotubes: In situ Raman scattering. Journal of Materials Research 22, 603–614 (2007).

Download citation