Aqueous solution diffusion in hydrophobic nanoporous thin-film glasses


We demonstrate that diffusion of aqueous buffered solutions into strongly hydrophobic nanoporous methyl silsesquioxane glass films can occur without the application of external pressure. The organic component of these glasses in the form of methyl groups imparts the strong hydrophobicity and perception that they are impervious to the ingress of aqueous solutions by capillary action or diffusion. The presence of small concentrations of organic buffering agents in buffered solutions appears to facilitate the diffusion. The diffusion distance followed a square root of time dependence characteristic of Fick’s Law. The diffusion coefficients varied markedly with the concentration of buffering agents, solution pH, and temperature. Similar effects were not observed for nonbuffered solutions that exhibited no detectable diffusion. Likely mechanisms responsible for the observed behavior are proposed.

This is a preview of subscription content, access via your institution.


  1. 1.

    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    J.L. Hedrick, R.D. Miller, C.J. Hawker, K.R. Carter, W. Volksen, D.Y. Yoon, and M. Trollsas: Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 10, 1049 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    K.W. Guarini, C.T. Black, K.R. Milkove, and R.L. Sandstrom: Nanoscale patterning using self-assembled polymers for semiconductor applications. J. Vac. Sci. Technol., B 19, 2784 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    S. Yang, P.A. Mirau, C.S. Pai, O. Nalamasu, E. Reichmanis, E.K. Lin, H.J. Lee, D.W. Gidley, and J. Sun: Molecular templating of nanoporous ultralow-dielectric constant (approximately = 1.5) organosilicates by tailoring the microphase separation of triblock copolymers. Chem. Mater. 13, 2762 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    T.M. Shaw, D. Jimerson, D. Haders, C.E. Murray, A. Grill, D.C. Edelstein, and D. Chidambarrao: Moisture and oxygen uptake in low k/copper interconnect structures, in Advanced Metallization Conference 2003 (AMC 2003), Montreal, Quebec, Canada, & Tokyo, Japan (Materials Research Society, Warrendale, PA, 2004).

    Google Scholar 

  7. 7.

    M.A. Worsley, S.F. Bent, S.M. Gates, T. Shaw, W. Volksen, and R.D. Miller: Detection of open or closed porosity in low-k dielectrics by solvent diffusion. Microelectron. Eng. 82, 113 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    D. Shamiryan, T. Abell, Q.T. Le, and K. Maex: Pinhole density measurements of barriers deposited on low-k films. Microelectron. Eng. 70, 341 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    D. Shamiryan, M.R. Baklanov, and K. Maex: Diffusion barrier integrity evaluation by ellipsometric porosimetry. J. Vac. Sci. Technol., B Microelectronics and Nanometer Structures. 21(1 SPEC.), 220 (2003).

    Article  Google Scholar 

  10. 10.

    D. Shamiryan and K. Maex: Solvent diffusion in porous low-k dielectric films, in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics–2003, edited by A.J. McKerrow, J. Leu, O. Kraft and T. Kikkawa (Mater. Res. Soc. Symp Proc. 766, Warrendale, PA, 2003), p. 229.

    Google Scholar 

  11. 11.

    H.C. Kim, J.B. Wilds, W.D. Hinsberg, L.R. Johnson, W. Volksen, T. Magbitang, V.Y. Lee, J.L. Hedrick, C.J. Hawker, R.D. Miller, and E. Huang: Selective sorption of nanoporous poly(methyl silsesquioxane). Chem. Mater. 14, 4628 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    E.P. Guyer, M. Patz, and R.H. Dauskardt: Fracture of nanoporous methylsilsesquioxane thin-film glasses. J. Mater. Res. 21, 882 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    M.C. Petty: Langmuir-Blodgett Films: An Introduction (Cambridge University Press, Cambridge, UK, 1996), pp. 12–38.

    Google Scholar 

  14. 14.

    B. Lefevre, A. Saugey, J.L. Barrat, L. Bocquet, E. Charlaix, P.F. Gobin, and G. Vigier: Intrusion and extrusion of water in hydrophobic mesopores. J. Chem. Phys. 120 (10), 4927 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    M.T. Spuller and D.W. Hess: Incomplete wetting of nanoscale thin-film structures. J. Electrochem. Soc. 150, G476 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Q. Le, V. Jeannot, M. Baklanov, R. Vanderheyden, W. Boullart, and S. Vanhaelemeersch: Effect of surfactant as additive in wet clean solutions on properties of low-k materials. Electrochem. Solid-State Lett. 9, F17 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    W. Thomson: On the equilibrium of vapor at a curved surface of liquid. Philos. Mag. 42, 448 (1871).

    Article  Google Scholar 

  18. 18.

    L.R. Fisher, R.A. Gamble, and J. Middlehurst: The Kelvin equation and the capillary condensation of water. Nature 290, 575 (1981).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Reinhold H. Dauskardt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guyer, E.P., Gantz, J. & Dauskardt, R.H. Aqueous solution diffusion in hydrophobic nanoporous thin-film glasses. Journal of Materials Research 22, 710–718 (2007).

Download citation