Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications

Abstract

Carbon in its various forms, specifically nanocrystalline diamond, may become a key material for the manufacturing of micro- and nano-electromechanical (M/NEMS) devices in the twenty-first century. To utilize effectively these materials for M/NEMS applications, understanding of their microscopic structure and physical properties (mechanical properties, in particular) become indispensable. The microcrystalline and nanocrystalline diamond films were grown using hot-filament and microwave chemical vapor deposition techniques involving novel CH4/[TMB for boron doping and H2S for sulfur incorporation] in high hydrogen dilution chemistry. To investigate residual stress distribution and intermolecular forces at nanoscale, the films were characterized using Raman spectroscopy and atomic force microscopy in terms of topography, force curves, and force volume imaging. Traditional force curve measures the force felt by the tip as it approaches and retracts from a point on the sample surface, whereas force volume is an array of force curves over an extended range of sample area. Moreover, detailed microscale structural studies are able to demonstrate that the carbon bonding configuration (sp2 versus sp3 hybridization) and surface chemical termination in both the un-doped and doped diamond have a strong effect on nanoscale intermolecular forces. The preliminary information in the force volume measurement was decoupled from topographic data to offer new insights into the materials’ surface and mechanical properties of diamond films. These measurements are also complemented with scanning electron microscopy and x-ray diffraction to reveal their morphology and structure and frictional properties, albeit qualitative using lateral force microscopy mode. We present these comparative results and discuss their potential impact for electronic and electromechanical applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Kalish: Properties of Diamond, edited by G. Davies (INSPEC, 1994), pp. 79–91.

  2. 2.

    J.A. Garrido, C.E. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova, E. Bustarret, A. Deneuville: A new acceptor state in CVD-diamond. Diamond Relat. Mater. 11, 347 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    J.C. Angus, P. Koidl, S. Domitz: Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC, Boca Raton, FL, 1986).

  4. 4.

    P.K. Bachmann, R. Messier: Chem. Eng. News 67, 24 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    M.H. Nazare: Properties and Growth of Diamond, edited by G. Davies (EMIS Data Review Series, INSPEC, 1994), p. 85.

  6. 6.

    P. John: The oxidation of (100) textured diamond. Diamond Relat. Mater. 11, 861 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    J.B. Cui, J. Robertson, W.I. Milne: The effect of film resistance on electron field emission from amorphous carbon films. Diamond Relat. Mater. 10, 868 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    K.H. Chen, Y.L. Lai, L.C. Chen, J.Y. Wu, F.J. Kao: High-temperature Raman study in CVD diamond. Thin Solid Films 270, 143 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    K.H. Chen, J.Y. Wu, L.C. Chen, C.C. Juan, T. Hsu: Wide bandgap semiconductors and devices—state-of-the-art program on compound semiconductors. Electrochemical Soc. Proc. 95-21, 57 (1995).

    Google Scholar 

  10. 10.

    W.A. Yarbrough, R. Messier: Chemical vapor deposited diamond films. Science 247, 688 (1990).

    CAS  Article  Google Scholar 

  11. 11.

    D.M. Gruen: Nanocrystalline diamond. Annu. Rev. Mater. Sci. 29, 211 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    T. Sharda, M.M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno: High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition. Diamond Relat. Mater. 10, 352 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    N.A. Morrison, S. Muhl, S.E. Rodil, A.C. Ferrari, M. Nesladek, W.I. Milne, J. Robertson: The preparation, characterization and tribological properties of TA-C:H deposited using an electron cyclotron wave resonance plasma beam source. Phys. Status Solidi A 172, 79 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    S. Jiao, A. Sumant, M.A. Kirk, D.M. Gruen, A.R. Krauss, O. Auciello: Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J. Appl. Phys. 90, 118 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    G. Amaratunga: Watching the nanotube. IEEE Spectrum, Sept., 28 (2003).

    Google Scholar 

  16. 16.

    A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, R.W. Carpick: Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039 (2004).

    Article  Google Scholar 

  17. 17.

    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Macini, N. Molodvan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond Relat. Mater. 10, 1952 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    J. Robertson: Diamond-like carbon. Philos. Mag. B 76, 335 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    R. Kalish: The search for donors in diamond. Diamond Relat. Mater. 10, 1749 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    S. Gupta, B.R. Weiner, G. Morell: Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films. J. Appl. Phys. 91, 10088 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    S. Gupta, A. Martinez, B.R. Weiner, G. Morell: Electrical conductivity studies of chemical vapor deposited sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 81, 283 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    S. Gupta, B.R. Weiner, G. Morell: Role of sp2 C cluster size on the field-emission properties of sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 80, 1471 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    O.A. Williams, S. Curat, R.B. Jackman, J.E. Gerbi, D.M. Gruen: n-type conductivity in ultrananocrystalline diamond films. Appl. Phys. Lett. 85, 1680 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    S. Gupta, B.R. Weiner, G. Morell: Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD. Diamond Relat. Mater. 11, 799 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).

    CAS  Article  Google Scholar 

  26. 26.

    B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Boston, MA, 1978), pp. 102–111.

    Google Scholar 

  27. 27.

    D.S. Knight, W.B. White: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).

    CAS  Article  Google Scholar 

  28. 28.

    M. Yoshikawa: Properties and characterization of amorphous carbon films. Mater. Sci. Forum 52 & 53, 365 (1989).

    Google Scholar 

  29. 29.

    S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, G. Morell: Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition. J. Appl. Phys. 88, 5695 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    L. Bergmann, R.J. Nemanich: Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films. J. Appl. Phys. 78, 6709 (1995).

    Article  Google Scholar 

  31. 31.

    R.J. Nemanich, J.T. Glass, G. Luckovsky, R.E. Shröder: Raman scattering characterization of carbon bonding in diamond and diamond-like thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).

    CAS  Article  Google Scholar 

  32. 32.

    S. Gupta, B.R. Weiner, G. Morell: Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition. J. Mater. Res. 18(2), 363 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    O.A. Williams, M. Daenen, J.D. Haen, K. Haenen, M. Nesladek, M.D. Olieslaeger: ADC05, Argonne National Laboratory, IL.

  34. 34.

    M. Dembo, Y.L. Wang: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307 (1999).

    CAS  Article  Google Scholar 

  35. 35.

    J. Domke, W.J. Parak, M. George, H.E. Gaub, M. Radmacher: Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28, 179 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    J. Domke, S. Dannohl, W.J. Parak, O. Muller, W.K. Aicher, M. Radmacher: Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf., B Biointerfaces 19, 367 (2000).

    CAS  Article  Google Scholar 

  37. 37.

    J.H. Hoh, W.F. Heinz, E. A-Hassan: Support Note No. 240 Part B Digital Instruments (1997).

    Google Scholar 

  38. 38.

    C. Rotsch, M. Radmacher: Mapping local electrostatic forces with the atomic force microscope. Langmuir 13, 2825 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    M. Chhowalla, A.C. Ferrari, J. Robertson, G.A.J Amaratunga: Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    A.C. Ferrari, J. Robertson: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63(12), 1405 (2001).

    Article  Google Scholar 

  41. 41.

    H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S., Williams, O.A., Patel, R.J. et al. Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications. Journal of Materials Research 21, 3037–3046 (2006). https://doi.org/10.1557/jmr.2006.0372

Download citation