Abstract
Carbon in its various forms, specifically nanocrystalline diamond, may become a key material for the manufacturing of micro- and nano-electromechanical (M/NEMS) devices in the twenty-first century. To utilize effectively these materials for M/NEMS applications, understanding of their microscopic structure and physical properties (mechanical properties, in particular) become indispensable. The microcrystalline and nanocrystalline diamond films were grown using hot-filament and microwave chemical vapor deposition techniques involving novel CH4/[TMB for boron doping and H2S for sulfur incorporation] in high hydrogen dilution chemistry. To investigate residual stress distribution and intermolecular forces at nanoscale, the films were characterized using Raman spectroscopy and atomic force microscopy in terms of topography, force curves, and force volume imaging. Traditional force curve measures the force felt by the tip as it approaches and retracts from a point on the sample surface, whereas force volume is an array of force curves over an extended range of sample area. Moreover, detailed microscale structural studies are able to demonstrate that the carbon bonding configuration (sp2 versus sp3 hybridization) and surface chemical termination in both the un-doped and doped diamond have a strong effect on nanoscale intermolecular forces. The preliminary information in the force volume measurement was decoupled from topographic data to offer new insights into the materials’ surface and mechanical properties of diamond films. These measurements are also complemented with scanning electron microscopy and x-ray diffraction to reveal their morphology and structure and frictional properties, albeit qualitative using lateral force microscopy mode. We present these comparative results and discuss their potential impact for electronic and electromechanical applications.
This is a preview of subscription content, access via your institution.
References
- 1.
R. Kalish: Properties of Diamond, edited by G. Davies (INSPEC, 1994), pp. 79–91.
- 2.
J.A. Garrido, C.E. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova, E. Bustarret, A. Deneuville: A new acceptor state in CVD-diamond. Diamond Relat. Mater. 11, 347 (2002).
- 3.
J.C. Angus, P. Koidl, S. Domitz: Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC, Boca Raton, FL, 1986).
- 4.
P.K. Bachmann, R. Messier: Chem. Eng. News 67, 24 (1989).
- 5.
M.H. Nazare: Properties and Growth of Diamond, edited by G. Davies (EMIS Data Review Series, INSPEC, 1994), p. 85.
- 6.
P. John: The oxidation of (100) textured diamond. Diamond Relat. Mater. 11, 861 (2002).
- 7.
J.B. Cui, J. Robertson, W.I. Milne: The effect of film resistance on electron field emission from amorphous carbon films. Diamond Relat. Mater. 10, 868 (2001).
- 8.
K.H. Chen, Y.L. Lai, L.C. Chen, J.Y. Wu, F.J. Kao: High-temperature Raman study in CVD diamond. Thin Solid Films 270, 143 (1995).
- 9.
K.H. Chen, J.Y. Wu, L.C. Chen, C.C. Juan, T. Hsu: Wide bandgap semiconductors and devices—state-of-the-art program on compound semiconductors. Electrochemical Soc. Proc. 95-21, 57 (1995).
- 10.
W.A. Yarbrough, R. Messier: Chemical vapor deposited diamond films. Science 247, 688 (1990).
- 11.
D.M. Gruen: Nanocrystalline diamond. Annu. Rev. Mater. Sci. 29, 211 (1999).
- 12.
T. Sharda, M.M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno: High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition. Diamond Relat. Mater. 10, 352 (2001).
- 13.
N.A. Morrison, S. Muhl, S.E. Rodil, A.C. Ferrari, M. Nesladek, W.I. Milne, J. Robertson: The preparation, characterization and tribological properties of TA-C:H deposited using an electron cyclotron wave resonance plasma beam source. Phys. Status Solidi A 172, 79 (1999).
- 14.
S. Jiao, A. Sumant, M.A. Kirk, D.M. Gruen, A.R. Krauss, O. Auciello: Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J. Appl. Phys. 90, 118 (2001).
- 15.
G. Amaratunga: Watching the nanotube. IEEE Spectrum, Sept., 28 (2003).
- 16.
A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, R.W. Carpick: Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039 (2004).
- 17.
A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Macini, N. Molodvan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond Relat. Mater. 10, 1952 (2001).
- 18.
J. Robertson: Diamond-like carbon. Philos. Mag. B 76, 335 (1997).
- 19.
R. Kalish: The search for donors in diamond. Diamond Relat. Mater. 10, 1749 (2001).
- 20.
S. Gupta, B.R. Weiner, G. Morell: Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films. J. Appl. Phys. 91, 10088 (2002).
- 21.
S. Gupta, A. Martinez, B.R. Weiner, G. Morell: Electrical conductivity studies of chemical vapor deposited sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 81, 283 (2002).
- 22.
S. Gupta, B.R. Weiner, G. Morell: Role of sp2 C cluster size on the field-emission properties of sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 80, 1471 (2002).
- 23.
O.A. Williams, S. Curat, R.B. Jackman, J.E. Gerbi, D.M. Gruen: n-type conductivity in ultrananocrystalline diamond films. Appl. Phys. Lett. 85, 1680 (2004).
- 24.
S. Gupta, B.R. Weiner, G. Morell: Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD. Diamond Relat. Mater. 11, 799 (2002).
- 25.
G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).
- 26.
B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Boston, MA, 1978), pp. 102–111.
- 27.
D.S. Knight, W.B. White: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).
- 28.
M. Yoshikawa: Properties and characterization of amorphous carbon films. Mater. Sci. Forum 52 & 53, 365 (1989).
- 29.
S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, G. Morell: Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition. J. Appl. Phys. 88, 5695 (2000).
- 30.
L. Bergmann, R.J. Nemanich: Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films. J. Appl. Phys. 78, 6709 (1995).
- 31.
R.J. Nemanich, J.T. Glass, G. Luckovsky, R.E. Shröder: Raman scattering characterization of carbon bonding in diamond and diamond-like thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).
- 32.
S. Gupta, B.R. Weiner, G. Morell: Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition. J. Mater. Res. 18(2), 363 (2003).
- 33.
O.A. Williams, M. Daenen, J.D. Haen, K. Haenen, M. Nesladek, M.D. Olieslaeger: ADC05, Argonne National Laboratory, IL.
- 34.
M. Dembo, Y.L. Wang: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307 (1999).
- 35.
J. Domke, W.J. Parak, M. George, H.E. Gaub, M. Radmacher: Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28, 179 (1999).
- 36.
J. Domke, S. Dannohl, W.J. Parak, O. Muller, W.K. Aicher, M. Radmacher: Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf., B Biointerfaces 19, 367 (2000).
- 37.
J.H. Hoh, W.F. Heinz, E. A-Hassan: Support Note No. 240 Part B Digital Instruments (1997).
- 38.
C. Rotsch, M. Radmacher: Mapping local electrostatic forces with the atomic force microscope. Langmuir 13, 2825 (1997).
- 39.
M. Chhowalla, A.C. Ferrari, J. Robertson, G.A.J Amaratunga: Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419 (2000).
- 40.
A.C. Ferrari, J. Robertson: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63(12), 1405 (2001).
- 41.
H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911 (2004).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gupta, S., Williams, O.A., Patel, R.J. et al. Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications. Journal of Materials Research 21, 3037–3046 (2006). https://doi.org/10.1557/jmr.2006.0372
Received:
Accepted:
Published:
Issue Date: