Impression stress relaxation of Sn3.5Ag eutectic alloy


The reliability of microelectronic interconnections depends on hot deformation of solders. In this work, we studied the localized stress relaxation of Sn3.5Ag eutectic alloy using the impression testing in the temperature range of 393–488 K. By incorporating the effect of internal stress in the analysis, we obtained the strain rate-stress exponent of 6.59. The activation energy for the stress relaxation is in the range from 38.6 to 43.8 kJ/mol, which compares well with the estimated activation energy of dislocation pipe diffusion, 46 kJ/mol, in pure tin. This suggests that a single mechanism of dislocation climb limited by dislocation pipe diffusion might be the controlling mechanism for the localized stress relaxation of the Sn3.5Ag eutectic alloy.

This is a preview of subscription content, access via your institution.


  1. 1.

    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine: Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J. Electron. Mater. 26, 783 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    M.L. Huang, L. Wang, C.M.L Wu: Creep behavior of eutectic Sn–Ag lead-free solder alloy. J. Mater. Res. 17, 2897 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    I. Dutta, C. Park, S. Choi: Impression creep characterization of rapidly cooled Sn–3.5Ag solders. Mater. Sci. Eng., A 379, 401 (2004).

    Article  Google Scholar 

  4. 4.

    F.Q. Yang, L.L. Peng: Impression creep of Sn3.5Ag eutectic alloy. Mater. Sci. Eng., A 409, 87 (2005).

    Article  Google Scholar 

  5. 5.

    M.M. El-Bahay, M.E. El Mossalamy, M. Mahdy, A.A. Bahgat: Some mechanical properties of Sn–3.5Ag eutectic alloy at different temperatures. J. Mater. Sci.-Mater. Electron. 15, 519 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    S.N.G Chu, J.C.M Li: Localized stress-relaxation by impression testing. Mater. Sci. Eng. 45, 167 (1980).

    Article  Google Scholar 

  7. 7.

    J.R.C Guimaraes, M.A. Meyers: Concerning stress relaxation experiments in commercial purity titanium. Scripta Metall. 11, 193 (1977).

    CAS  Article  Google Scholar 

  8. 8.

    S.N.G Chu, J.C.M Li: Impression creep—New creep test. J. Mater. Sci. 12, 2200 (1977).

    CAS  Article  Google Scholar 

  9. 9.

    D.H. Sastry, G.S. Murthy: Impression creep-behavior of metals at high-temperatures. Trans. Indian Inst. Met. 39, 369 (1986).

    CAS  Google Scholar 

  10. 10.

    A. Juhasz, P. Tasnadi, P. Szaszvari, I. Kovacs: Investigation of the superplasticity of tin lead eutectic by impression creep tests. J. Mater. Sci. 21, 3287 (1986).

    CAS  Article  Google Scholar 

  11. 11.

    H.Y. Yu, M.A. Imam, B.B. Rath: An impression test method for characterization of the flow behavior of superplastic material. Mater. Sci. Eng. 79, 125 (1986).

    CAS  Article  Google Scholar 

  12. 12.

    P. Tasnadi, A. Juhasz, N.Q. Chinh, I. Kovacs: Theoretical description of the deformation taking place in an impression test. Res. Mechanica 24, 335 (1988).

    Google Scholar 

  13. 13.

    M.A. Lisin, I.D. Choi, D.K. Matlock, D.L. Olson: A composite modeling analysis of impression creep testing on heterogeneous materials. Welding J. 69 159s (1990).

  14. 14.

    T.H. Hyde, K.A. Yehia, A.A. Becker: Interpretation of impression creep data using a reference stress approach. Int. J. Mech. Sci. 35, 451 (1993).

    Article  Google Scholar 

  15. 15.

    D.Y. Chiang, J.C.M Li: Impression creep of abs polymers. Polymer 35, 4103 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    P.P. Rao, K.S. Swamy: Effect of microstructure on the impression creep of two-phase titanium aluminide. Z. Metallkd. 86, 760 (1995).

    CAS  Google Scholar 

  17. 17.

    F.Q. Yang, J.C.M Li: Impression test of 63Sn–37Pb eutectic alloy. Mater. Sci. Eng., A 201, 40 (1995).

    Article  Google Scholar 

  18. 18.

    D.P. Butt, D.A. Korzekwa, S.A. Maloy, H. Kung, J.J. Petrovic: Impression creep behavior of SiC particle MoSi2 composites. J. Mater. Res. 11, 1528 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    K. Balani, F.Q. Yang: Creep behavior of 90Pb–10Sn alloy. Phys. Status Solidi 198, 387 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    F.Q. Yang: Viscosity measurement of polycarbonate by using penetration viscometer. Polym. Eng. Sci. 37, 101 (1997).

    CAS  Article  Google Scholar 

  21. 21.

    F.Q. Yang, J.C.M Li: Viscosity measurement of amorphous Se by impression Test. J. Non-Cryst. Solids 212, 136 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    F.Q. Yang, J.C.M Li: Impression recovery of polymers. J. Electron. Mater. 26, 859 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    J.W. Harding, I.N. Sneddon: The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Cambridge Philos. Soc. 41, 16 (1945).

  24. 24.

    E. Orowan: Problems of plastic gliding. Proc. Phys. Soc., London 52, 8 (1940).

    Article  Google Scholar 

  25. 25.

    W.G. Johnston, J.J. Gilman: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Phys. 30, 129 (1959).

    CAS  Article  Google Scholar 

  26. 26.

    J.C.M Li: Dislocation dynamics in deformation and recovery. Can. J. Phys. 45, 493 (1967).

    CAS  Article  Google Scholar 

  27. 27.

    K. Okazaki, M. Kagawa, Y. Aono: Analysis of thermally activated flow in an Fe-0.056 at percent Ti alloy using stress relaxation. Z. Metalkd. 67, 47 (1976).

    CAS  Google Scholar 

  28. 28.

    D.Y. Chiang, J.C.M Li: Impression creep of lead. J. Mater. Res. 9, 903 (1994).

    CAS  Article  Google Scholar 

  29. 29.

    S. Wiese, F. Feustel, E. Meusel: Characterisation of constitutive behavior of SnAg, SnAgCu, and SnPb solder in flip chip joints. Sens. Actuators, A 99, 188 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals (CRC Press, New York, 1999), p. 233.

    Google Scholar 

  31. 31.

    O.D. Sherby, J. Weertman: Diffusion-controlled dislocation creep: A defense. Acta Metall. 27, 387 (1979).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, F., Peng, L. & Okazaki, K. Impression stress relaxation of Sn3.5Ag eutectic alloy. Journal of Materials Research 21, 2653–2659 (2006).

Download citation