Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol

Abstract

Nanoparticles of iron carbides (Fe3C and χ-Fe2.5C) wrapped in multilayered graphitic sheets were synthesized by a developed method in which an electric plasma was generated in an ultrasonic cavitation field containing thousands of tiny activated bubbles in liquid ethanol. Annealing changed the phase composition, structure, and size of the carbon nanocapsules as most of the iron carbides decomposed into the α-Fe phase and graphite. Powder samples annealed at 873 and 973 K have maximal saturation magnetization values equal to 80.6 and 83.4 A m2/kg, respectively, which is approximately 40% of the value of bulk iron. Using this method, it will be possible to synthesize nanoparticles of a metal of choice encapsulated by graphite shells by selecting appropriate materials for the ultrasonic tip and electrodes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Hanayama, T. Ideno: Magnetic recording medium. Japan Patent: JP 06-152793.

  2. 2.

    A.A. Kuznetsov, V.I. Filippov, O.A. Kuznetsov, V.G. Gerlivanov, E.K. Dobrinsky, S.I. Malashin: New ferro-carbon adsorbents for magnetically guided transport of anti-cancer drugs. J. Magn. Magn. Mater. 194, 22 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina: Carbon nanocapsules encaging metals and carbides. J. Phys. Chem. Solids 54(12), 1849 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    J. Jiao, S. Seraphin, X. Wang, J.C. Withers: Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J. Appl. Phys. 80(1), 103 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    R. Sergiienko, E. Shibata, Z. Akase, H. Suwa, T. Nakamura, D. Shindo: Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field. Mater. Chem. Phys. 98, 34 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    E.A. Neppiras: Acoustic cavitation. Phys. Rep. 61, 159 (1980).

    Article  Google Scholar 

  7. 7.

    Y.T. Didenko III, W.B. McNamara, K.S. Suslick: Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121, 5817 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    W.B. McNamara III, Y.T. Didenko, K.S. Suslick: Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    E. Shibata, R. Sergiienko, H. Suwa, T. Nakamura: Synthesis of amorphous carbon particles by an electric arc in the ultrasonic cavitation field of liquid benzene. Carbon 42, 885 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    R. Sergiienko, E. Shibata, H. Suwa, T. Nakamura, Z. Akase, Y. Murakami, D. Shindo: Synthesis of amorphous carbon nanoparticles and carbon encapsulated metal nanoparticles in liquid benzene by an electric plasma discharge in ultrasonic cavitation field. Ultrason. Sonochem. 13, 6 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    F. Paschen: Über die zum Funkenübergang in Luft, Wasserstoff and Kohlensäure bei verschiedenen Drücken erforderliche Potentialdifferenz. Weid. Ann. Phys. 37, 69 (1889).

    Article  Google Scholar 

  12. 12.

    J. Fuhr, W.F. Schmidt, S. Sato: Spark breakdown of liquid hydrocarbons. I. Fast current and voltage measurements of the spark breakdown in liquid n-hexane. J. Appl. Phys. 59(11), 3694 (1986).

    CAS  Article  Google Scholar 

  13. 13.

    J. Fuhr, W.F. Schmidt: Spark breakdown of liquid hydrocarbons. II. Temporal development of the electric spark resistance in n-pentane, n-hexane, 2,2 dimethylbutane, and n-decane. J. Appl. Phys. 59(11), 3702 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, O. Ostrovski: Cementite formation in CH4-H2-Ar gas mixture and cementite stability. ISIJ Int. 41(4), 333 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    T. Hayashi, S. Hirono, M. Tomita, S. Umemura: Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381, 772 (1996).

    Article  Google Scholar 

  16. 16.

    O. Mamezaki, H. Adachi, S. Tomita, M. Fujii, S. Hayashi: Thin films of carbon nanocapsules and onion-like graphitic particles prepared by the cosputtering method. Jpn. J. Appl. Phys. 39, 6680 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    R.W.B Pearse, A.G. Gaydon: The Identification of Molecular Spectra, 4th ed. (Chapman and Hall, London, 1976).

    Google Scholar 

  18. 18.

    A.R. Striganov, N.S. Sventitskii: Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, 1968).

    Google Scholar 

  19. 19.

    E.P. Yelsukov, A.I. Ul’yanov, A.V. Zagainov, N.B. Arsent’yeva: Hysteresis magnetic properties of the Fe(100 − x)C(x); x = 5-25 at.% nanocomposites as-mechanically alloyed and after annealing. J. Magn. Magn. Mater. 258–259, 513 (2003).

    Article  Google Scholar 

  20. 20.

    Z.D. Zhang, J.G. Zheng, I. Skorvanek, J. Kovac, J.L. Yu, X.L. Dong, Z.J. Li, S.R. Jin, X.G. Zhao, W. Liu: Synthesis, characterization, and magnetic properties of carbon- and boron-oxide-encapsulated iron nanocapsules. J. Nanosci. Nanotechol. 1(2), 153 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    T. Hihara, H. Onodera, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina, Y. Saito, T. Yoshikawa, M. Okuda: Magnetic properties of iron in nanocapsules. Jpn. J. Appl. Phys. 33, L24 (1994).

    Article  Google Scholar 

  22. 22.

    D.L. Leslie-Pelecky, R.D. Rieke: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruslan Sergiienko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sergiienko, R., Shibata, E., Akase, Z. et al. Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol. Journal of Materials Research 21, 2524–2533 (2006). https://doi.org/10.1557/jmr.2006.0316

Download citation