Atomistic simulation for configuration evolution and energetic calculation of crack in body-centered-cubic iron

Abstract

The molecular dynamics method has been used to simulate mode I cracking in body-centered-cubic iron. Close attention has been paid to the process of the atomic configuration evolution of the cracks. The simulation shows that at low temperatures, partial dislocations are emitted before the initiation of crack propagation, subsequently forming the stacking faults or multilayer twins on {112} planes, and then brittle cleavage and extended dislocation nucleation are observed at the crack tip accompanied by twin extension. These results are in agreement with the experimental observation that twinning and fracture processes cooperate at low temperatures. Furthermore, an energetics analysis has been made on the deformation behavior observed at the crack tip. The effect of temperature on the fracture process is discussed. At the higher temperature, plastic deformation becomes easier, and crack blunting occurs. With increasing temperature, the fracture resistance increases, and the effect of the lattice trapping can be weakened by thermal activation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Kelly, W.R. Tyson, A.H. Cottrell: Ductile and brittle crystals. Philos. Mag. 15, 567 (1967).

    CAS  Google Scholar 

  2. 2.

    J.R. Rice, R. Thomson: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974).

    CAS  Google Scholar 

  3. 3.

    J.R. Rice: Dislocation nucleation from a crack tip: An analysis based on the peierls concept. J. Mech. Phys. Solids 40, 239 (1992).

    CAS  Google Scholar 

  4. 4.

    J.R. Rice, G.E. Beltz: The activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333 (1994).

    CAS  Google Scholar 

  5. 5.

    P.B. Hirsch, S.G. Roberts: Comment on the brittle-to-ductile transition: A cooperative dislocation generation instability; dislocation dynamics and the strain-rate dependence of the transition temperature. Acta Mater. 44, 2361 (1996).

    CAS  Google Scholar 

  6. 6.

    A. Hartmaier, P. Gumbsch: On the activation energy for the brittle/ductile transition. Phys. Status Solidi B 202, R1 (1997).

    CAS  Google Scholar 

  7. 7.

    P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282, 1293 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    S.M. Ohr: An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater. Sci. Eng. 72, 1 (1985).

    CAS  Article  Google Scholar 

  9. 9.

    M.J. Lii, X.F. Chen, Y. Katz, W.W. Gerberich: Dislocation modeling and acoustic emission observation of alternating ductile/brittle events in Fe-3wt%Si crystals. Acta Metall. Mater. 38, 2435 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    W. Zielinski, M.J. Lii, W.W. Gerberich: Crack-tip dislocation emission arrangements for equilibrium—I. In situ TEM observations of Fe-2wt%Si. Acta Metall. Mater. 40, 2861 (1992).

    CAS  Google Scholar 

  11. 11.

    A. Machová, G.E. Beltz, M. Chang: Atomistic simulation of stacking fault formation in bcc iron. Model. Simul. Mater. Sci. Eng. 7, 949 (1999).

    Google Scholar 

  12. 12.

    D. Farkas, M. Duranduru: Multiple-dislocation emission from the crack tip in the ductile fracture of Al. Philos. Mag. A 81, 1241 (2001).

    CAS  Google Scholar 

  13. 13.

    D. Hull: Twinning and fracture of single crystals of 3% silicon iron. Acta Metall. 8, 11 (1960).

    CAS  Google Scholar 

  14. 14.

    A.W. Sleeswyk: Twinning and the origin of cleavage nuclei in α-iron. Acta Metall. 10, 803 (1962).

    CAS  Google Scholar 

  15. 15.

    K. Ogawa: Edge dislocations dissociated in 112 planes and twinning mechanism of b.c.c. metals. Philos. Mag. 11, 217 (1965).

    CAS  Google Scholar 

  16. 16.

    J. Bošanský, T. Šmida: Deformation twins–Probable inherent nuclei of cleavage fracture in ferritic steels. Mater. Sci. Eng., A 323, 198 (2002).

    Google Scholar 

  17. 17.

    B. deCelis, A.S. Argon, S. Yip: Molecular dynamics simulation of crack tip processes in alpha-iron and copper. J. Appl. Phys. 54, 4864 (1983).

    CAS  Google Scholar 

  18. 18.

    K.S. Cheung, S. Yip: A molecular-dynamics simulation of crack-tip extension: The brittle-to-ductile transition. Model. Simul. Mater. Sci. Eng. 2, 865 (1994).

    CAS  Google Scholar 

  19. 19.

    S.Y. Hu, M. Ludwig, P. Kizler, S. Schmauder: Atomistic simulations of deformation and fracture of α–Fe. Model. Simul. Mater. Sci. Eng. 6, 567 (1998).

    CAS  Google Scholar 

  20. 20.

    S. Hai, E.B. Tadmor: Deformation twinning at aluminum crack tips. Acta Mater. 51, 117 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    M.W. Finnis, J.E. Sinclair: A simple empirical N-body potential for transition metals. Philos. Mag. A. 50, 45 (1984).

    CAS  Article  Google Scholar 

  22. 22.

    M.W. Finnis, J.E. Sinclair: Erratum. Philos. Mag. A. 53, 161 (1986).

    Article  Google Scholar 

  23. 23.

    G.C. Sih, H. Liebowitz: Mathematical theories of brittle fracture, in Fracture: An Advanced Treatise, Vol. 2, edited by H. Liebowitz (Academic Press, New York, 1968), pp. 108–125.

    Google Scholar 

  24. 24.

    L. Hua, H. Rafii-Tabar, M. Cross: Molecular dynamics simulation of fractures using an N-body potential. Philos. Mag. Lett. 75, 237 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    A. Machová, G.J. Ackland: Dynamic overshoot in α-iron by atomistic simulations. Model. Simul. Mater. Sci. Eng. 6, 521 (1998).

    Article  Google Scholar 

  26. 26.

    M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, New York, 1987), p. 83.

    Google Scholar 

  27. 27.

    R. Thomson, C. Hsieh, V. Rana: Lattice trapping of fracture cracks. J. Appl. Phys. 42, 3154 (1971).

    CAS  Article  Google Scholar 

  28. 28.

    D. Hull, D.J. Bacon: Introduction to Dislocations, 3rd ed. (Pergamon Press, New York, 1984), p. 7.

    Google Scholar 

  29. 29.

    N.H. Macmillan: The ideal strength of solids, in Atomistics of Fracture, edited by R.M. Latanision and J.R. Pickens, (Plenum Press, New York, 1983), p. 111.

  30. 30.

    J. Frenkel: The theory of the elastic limit and the hardness of crystalline body. Z. Phys. 37, 572 (1926).

    Google Scholar 

  31. 31.

    T.C. Wang: Fracture criteria for combined cleavage and dislocation emission. Philos. Mag. A 74, 983 (1996).

    CAS  Google Scholar 

  32. 32.

    A. Latapie, D. Farkas: Molecular dynamics investigation of the fracture behavior of nanocrystalline α–Fe. Phys. Rev. B 69, 134110 (2004).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-Xia Cao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, LX., Wang, CY. Atomistic simulation for configuration evolution and energetic calculation of crack in body-centered-cubic iron. Journal of Materials Research 21, 2542–2549 (2006). https://doi.org/10.1557/jmr.2006.0307

Download citation