Nanometric oxides from molecular precursors in the presence of starch: Coatings of glass with these oxides in silica sols

Abstract

Sn, Sn-Sb, Ti, Ce, Zr, Zn, In, In–Sn, and Fe oxides of nanometric size were obtained through the hydrolytic route, starting from molecular precursors in the presence of starch. Gels were treated with α-amylase to produce oxide suspensions and starch degradation. Solid oxide products resulted from reaction with H2O2, washing with H2O, and centrifugation of the suspensions. The nanometric size and morphology of crystallites were assessed by x-ray diffractometry, transmission electron microscopy, and, for SnO2, solid-state nuclear magnetic resonance. Product consolidation at 600 °C did not produce any noticeable increase in dimensions. Thermal analysis coupled with mass spectrometry of evolved gaseous species showed that glucoside residues remain chemically bonded to the nanoparticles, thus explaining the effective stabilization of crystallite dimensions. Aqueous suspensions of nanopowders were mixed with a silicon tetra-ethoxide ethanol solution and subjected to an ordinary sol-gel process. The resulting suspensions were used to obtain stable and homogeneous coatings on glass sheets.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Hill, S.Y. Heriot, O. Worsfold, T.H. Richardson, A.M. Fox, D.D.C Bradley: Dynamics of Forster transfer in polyfluorene-based polymer blends and Langmuir–Blodgett nanostructures. Synth. Met. 139, 787 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    O.V. Salata: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3 (2004).

    Article  Google Scholar 

  3. 3.

    S.A. Wissing, R.H. Müller: Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254, 65 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    C.P. Tan, M. Nakajima: b-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92, 661 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    J. Henry, A. Anand, M. Chowdhury, G. Coté, R. Moreira, T. Good: Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins. Anal. Biochem. 334, 1 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    C.B. Murray, C.R. Kagan, M.G. Bawendi: Synthesis and characterization of monodiperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    A. Chiorino, G. Ghiotti, F. Prinetto, M.C. Carotta, M. Gallana, G. Martinelli: Characterization of materials for gas sensors. Surface chemistry of SnO2 and MoOx–SnO2 nano-sized powders and electrical responses of the related thick films. Sens. Actuators B. Chem. B59, 203 (1999).

    Article  Google Scholar 

  8. 8.

    A.T. Bell: The impact of nanoscience on heterogeneous catalysis. Science 299, 1688 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    G.A. Mansoori: Advances in atomic & molecular nanotechnology. Tech Monitor, (Sept–Oct) 53 (2002).

    Google Scholar 

  10. 10.

    J.P. Jolivet: Metal Oxide Chemistry and Synthesis. From Solution to Solid State. 1st ed. (John Wiley and Sons, New York, 2000).

    Google Scholar 

  11. 11.

    R. Pashley, M. Karaman: Applied Colloid and Surface Chemistry 1st ed. (John Wiley and Sons, New York, 2004).

    Google Scholar 

  12. 12.

    L. Mu, P.H. Seow, S.N. Ang, S.S. Feng: Study on surfactant coating of polymeric nanoparticles for controlled delivery of anticancer drug. Colloid Polym. Sci. 283, 58 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    M.T. Reetz, M. Winter, R. Breimbauer, T. Thurn-Albrecht, W. Vogel: Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni-, and Pt/Pd colloids. Chem. Eur. J. 7, 1084 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    B.H. Ryu, J.D. Lee, Y.C. Kang, H.S. Park: Synthesis of highly concentrated silver nanoparticles assisted polymeric dispersant. Key Eng. Mater. 264–268, 141 (2004).

    Article  Google Scholar 

  15. 15.

    E. Callone, G. Carturan, A. Sicurelli: Nanopowders of metallic oxides by the hydrolytic route with starch stabilization and biological abetment. J. Nanosci. Nanotechnol. 6, 1 (2006).

    Article  Google Scholar 

  16. 16.

    C.J. Brinker, A.J. Hurd: Fundamentals of sol-gel dip-coating. J. Phys. III France 4, 1231 (1994).

    Article  Google Scholar 

  17. 17.

    C.J. Brinker, G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  18. 18.

    C.J. Brinker, A.J. Hurd, P.R. Schunk, C.S. Ashley: Review of sol-gel thin film formation. J. Non-Cryst. Solids 147–148, 424 (1992).

    Article  Google Scholar 

  19. 19.

    ANSI B.46.1-85 Surface Texture (Surface Roughness, Waviness, and Lay) ANSI/ASME American Society of Mechanical Engineers Ed., New York, NY, 1985.

  20. 20.

    DIN 4776: 1990 Surface Texture (Parameters Rk, Rpk, Rvk, Mrl, Mr2 for the description of the material portion in the roughness profile; measuring conditions and evaluation procedures), Berlin, Germany.

  21. 21.

    L. Lutterotti, S. Matthies, and H.R. Wenk: in Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12) (1999), p. 1599.

  22. 22.

    R. Campostrini, G.D. Sorarù, R. Ceccato, G. Carturan, G. Dandrea: Pyrolysis study of methyl-substituted Si-H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis. J. Mater. Chem. 6, 585 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    D.C. Bradley, E.V. Caldwell, W. Wardlaw: The preparation and properties of stannic alkoxides. J. Chem. Soc. A 79, 4775 (1957).

    Article  Google Scholar 

  24. 24.

    E. Matijevic: Monodispersed metal (hydrous) oxides—A fascinating field of colloid science. Acc. Chem. Res. 14, 22 (1981).

    CAS  Article  Google Scholar 

  25. 25.

    N.J. Clayden, C.M. Dobson, A. Fern: High-resolution solid-state tin-119 nuclear-magnetic-resonance spectroscopy of ternary tin oxides. J. Chem. Soc. Dalton Trans.: Inorg. Chem. (1972–1999),843 (1989).

    Google Scholar 

  26. 26.

    D.P. Tunstall, S. Patou, R.S. Liu, Y.H. Kao: Size effects in the NMR of SnO2 powders. Mater. Res. Bull. 34, 1513 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    Films Sol-Gel Technology for Thin Fibers, Preforms, Electronics and Speciality Forms edited by L.C. Klein (Noyes, Park Ridge, NJ, 1988).

    Google Scholar 

  28. 28.

    L.L. Hench, J.K. West: The sol-gel process. Chem. Rev. 90, 33 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    S. Mathur in NATO ASI Series: Chemical Physics of Thin Film Deposition for Micro- and Nano-Technologies edited by Y. Pauleau (Kluwer Academic Publications, Dordrecht, Netherlands, 2002), p. 91.

  30. 30.

    R.E. Dinnebier, S. Vensky, M. Jansen, J.C. Hanson: Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali metal oxalates M2[C2O4] (M = K, Rb,Cs). Chem. Eur. J. 11, 1119 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    M.A. Mohamed, A.K. Galwey, S.A. Halawy: A comparative study of the thermal reactvities of some transition metal oxides in selected atmospheres. Thermochim. Acta 429, 57 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    R.L. Frost, M.L. Weier: Thermal decomposition of humboldtine—A high resolution thermogravimetric and hot stage Raman spectroscopic study. J. Therm. Anal. Calorim. 75, 277 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    S. Zhang, W.E. Lee: Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Eur. Ceram. Soc. 23, 1215 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    L.L. Díaz-Flores, F.J. Espinoza-Beltrán, J.M. Yáñez-Limón, A. Mendoza-Galván, R. Ramírez-Bon, J. González-Hernández: Qualitative evaluation of sol-gel SiO2 as a protective layer for soft surfaces. Surf. Coat. Technol. 148, 1 (2001).

    Article  Google Scholar 

  35. 35.

    M.A. Villegas: Chemical and microstructural characterization of sol-gel coatings in the ZrO2–SiO2 system. Thin Solid Films 382, 124 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    L.D. Landau, B. Levich: Dragging of a liquid by a moving plate. Acta Physiochim. URSS. 17, 42 (1942).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Carturan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Callone, E., Carturan, G., Ischia, M. et al. Nanometric oxides from molecular precursors in the presence of starch: Coatings of glass with these oxides in silica sols. Journal of Materials Research 21, 1726–1737 (2006). https://doi.org/10.1557/jmr.2006.0217

Download citation