Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers

Abstract

Carbon nitrogen nanotubes and nanofibers with controlled nitrogen concentration have been prepared by reaction of cyanuric chloride and hexachlorobenzene (HCB) with sodium metal at 250 °C in cyclohexane. Electron microscopy and spectroscopic analysis were used to characterize the products. The total yields of the tubes and fibers decrease as the ratio of cyanuric chloride to HCB increases, and nitrogen content in the products could be controlled by the ratio. The nanostructures depended strongly on the nitrogen content. Lower nitrogen content was favorable for producing linear products.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Google Scholar 

  2. 2.

    O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, G. Raina, J.P. Zhang, A.K. Cheetham, C.N.R Rao: B–C–N, C–N, and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    D.M. Teter, R.J. Hemley: Low-compressibility carbon nitrides. Science 271, 53 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    W.H. Xu, T. Kyotani, B.K. Pradhan, T. Nakajima, A. Tomita: Synthesis of aligned carbon nanotubes with double coaxial structure of nitrogen-doped and undoped multiwalls. Adv. Mater. 15(13), 1087 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    K. Suenaga, M. Yudasaka, C. Colliex, S. Iijima: Radically modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phys. Lett. 316, 365 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M Walton: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    M. Yudasaka, R. Kikuchi, Y. Ohki, S. Yoshimura: Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35(2), 195 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J.P. Zhang, P. Redlich, W.K. Hsu, C.L. Reeves, D.J. Wallis, Y.Q. Zhu, J.P. Hare, A.J. Pidduck, H.W. Kroto, D.R.M Walton: A novel route to aligned nanotubes and nanofibers using laser-patterned catalytic substrates. Appl. Phys. A: Mater. Sci. Process. 70, 175 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.K. Hsu, H. Terrones, Y.Q. Zhu, J.P. Hare, C.L. Reeves, A.K. Cheetham, M. Ruhle, H.W. Kroto, D.R.M Walton: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    M. Nath, B.C. Satishkumar, A. Govindaraj, C.P. Vinod, C.N.R Rao: Production of bundles of aligned carbon and carbon-nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem. Phys. Lett. 322, 333 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M Walton, P. Kohler-Redlich, M. Ruhle, J.P. Zhang, A.K. Cheetham: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    X.B. Wang, Y.Q. Liu, D.B. Zhu, L. Zhang, H.Z. Ma, N. Yao, B.L. Zhang: Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J. Phys. Chem. B 106, 2186 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, H. Terrones: N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties. Appl. Phys. A: Mater. Sci. Process. 74, 355 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, H.C. Shih: Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett. 74, 197 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Y.T. Lee, N.S. Kim, S.Y. Bae, J. Park, S.C. Yu, H. Ryu, H.J. Lee: Growth of vertically aligned nitrogen-doped carbon nanotubes: Control of the nitrogen content over the temperature range 900–1100 degrees C. J. Phys. Chem. B 107, 12958 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    S. Trasobares, O. Stephan, C. Colliex, W.K. Hsu, H.W. Kroto, D.R.M Walton: Compartmentalized CNx nanotubes: Chemistry, morphology, and growth. J. Chem. Phys. 116(20), 8966 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    M. Glerup, M. Castignolles, M. Holzinger, G. Hug, A. Loiseau, P. Bernier: Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chem. Comm. 20, 2542 (2003).

    Article  CAS  Google Scholar 

  20. 20.

    C.C. Tang, D. Golberg, Y. Bando, F.F. Xu, B.D. Liu: Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. Chem. Comm. 24, 3050 (2003).

    Article  CAS  Google Scholar 

  21. 21.

    D.L. Qian, R. Andrews, D. Jacques, P. Kichambare, G. Lian, E.C. Dickey: Low-temperature synthesis of large-area CNx nanotube arrays. J. Nanosci. Nanotech. 3, 93 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    J. Jung, M. Perrut: Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids 20, 179 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    L. Grocholl, J.J. Wang, E.G. Gillan: Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition. Mater. Res. Bull. 38, 213 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    S.J. Chen, L.H. Li, X.T. Chen, Z.L. Xue, J.M. Hong, X.Z. You: Preparation and characterization of nanocrystalline zinc oxide by a novel solvothermal oxidation route. J. Cryst. Growth 252, 184 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Jiang, Y. Wu, S.Y. Zhang, C.Y. Xu, W.C. Yu, Y. Xie, Y.T. Qian: A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122, 12383 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    Y.D. Li, Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li, G. Zhou: A reduction-pyrolysis-catalysis synthesis of diamond. Science 281, 246 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    C.Y. Lee, H.T. Chiu, C.W. Peng, M.Y. Yen, Y.H. Chang, C.S. Liu: Polygon building block route to sp(2)-carbon-based materials. Adv. Mater. 13, 1105 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    G. Hu, M.J. Cheng, D. Ma, X.H. Bao: Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    G. Hu, D. Ma, M.J. Cheng, L. Liu, X.H. Bao: Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. 17, 1948 (2002).

    Article  CAS  Google Scholar 

  30. 30.

    J.L. O’Loughlin, C.H. Kiang, C.H. Wallace, T.K. Reynolds, L. Rao, RB. Kaner: Rapid synthesis of carbon nanotubes by solid-state metathesis reactions. J. Phys. Chem. B 105, 1921 (2001).

    Article  CAS  Google Scholar 

  31. 31.

    A. Andreyev, M. Akaishi, D. Golberg: Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. Chem. Phys. Lett. 372, 635 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    T.C. Mu, J. Huang, Z.M. Liu, B.X. Han, Z.H. Li, Y. Wang, T. Jiang, H.X. Gao: Synthesis and characterization of polyether structure carbon nitride. J. Mater. Res. 19, 1736 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    C.B. Cao, F.L. Huang, C.T. Cao, J. Li, H. Zhu: Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater. 16, 5213 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Q.X. Guo, Y. Xie, X.J. Wang, S.Y. Zhang, T. Hou, S.C. Lv: Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun. 1, 26 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave: Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 12, 3264 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    J.L. Zimmerman, R. Williams, V.N. Khabashesku, J.L. Margrave: Synthesis of spherical carbon nitride nanostructures. Nano Lett. 1, 731 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    E. Kroke, M. Schwarz: Novel group 14 nitrides. Coord. Chem. Rev. 248, 493 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Y. Miyamoto, M.L. Cohen, S.G. Louie: Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun. 102, 605 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    J.E. Lowther: Defective and amorphous structure of carbon nitride. Phys. Rev. B 57, 5724 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    C.H. Kiang, W.A. Goddard: Polyyne ring nucleus growth model for single-layer carbon nanotubes. Phys. Rev. Lett. 76, 2515 (1996).

    CAS  Article  Google Scholar 

  41. 41.

    Y.H. Lee, S.G. Kim, D. Tomanek: Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 78, 2393 (1997).

    CAS  Article  Google Scholar 

  42. 42.

    A. Maiti, C.J. Brabec, J. Bernholc: Kinetics of metal-catalyzed growth of single-walled carbon nanotubes. Phys. Rev. B 55, R6097 (1997).

    CAS  Article  Google Scholar 

  43. 43.

    A.N. Andriotis, M. Menon, G. Froudakis: Catalytic action of Ni atoms in the formation of carbon nanotubes: A molecular dynamics study. Phys. Rev. Lett. 85, 3193 (2000).

    CAS  Article  Google Scholar 

  44. 44.

    N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, Y.S. Choi, J. Choo: Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B 106, 9286 (2002).

    CAS  Article  Google Scholar 

  45. 45.

    N.S. Kim, Y.T. Lee, J. Park, J.B. Han, Y.S. Choi, S.Y. Choi, J. Choo, G.H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J. Phys. Chem. B 107, 9249 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    B.L. Ivanov, L.M. Zambov, G.T. Georgiev, C. Popov, M.F. Plass, W. Kulisch: Low-pressure CVD of carbon nitride using triazine-containing precursors. Chem. Vap. Deposition 5, 265 (1999).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Buxing Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mu, T., Huang, J., Liu, Z. et al. Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers. Journal of Materials Research 21, 1658–1663 (2006). https://doi.org/10.1557/jmr.2006.0209

Download citation