Study of copper-refractory metal interfaces via solid-state wetting for emerging nanoscale interconnect applications


Solid-state wetting experiments were carried out to derive the work of adhesion (adhesion energy) of pertinent Cu/liner interfaces via the Young–Dupré equation using contact-angle measurements of the Cu equilibrium crystal shape on Ta and TaNx liners. Four types of liner surfaces were examined: untreated sputtered Ta (uSp-Ta), untreated sputtered TaNx (uSp-TaN), untreated atomic layer deposited (ALD) TaNx (uALD-TaN), and indium surfactant-treated ALD TaNx (tALD-TaN). All Cu-liner stacks were subsequently annealed at 600 °C for 48 h in a forming gas (95% Ar/5% H2) ambient. For Cu/uSp-Ta, the work of adhesion was found to be 2170 mJ/m2, corresponding to an average contact angle of 74°, while for Cu/uSp-TaN, the work of adhesion amounted to 1850 mJ/m2 for an average contact angle of 85°. Alternatively, the work of adhesion for Cu/uALD-TaN was determined to be 1850 mJ/m2, corresponding to an average contact angle of 85°, while for Cu/tALD-TaN, the work of adhesion was 2280 mJ/m2, at an average contact angle of 70°. These findings indicate that the highest degree of surface wetting occurs for the indium surfactant-treated ALD TaNx. It is thus suggested that surfactant treatment causes a reduction in the energy barrier to Cu nucleation, resulting in an enhancement in Cu wetting characteristics and a more uniform concentration of Cu nucleation sites. A critical potential outcome is the formation of atomically smooth Cu-liner interfaces with enhanced adhesion characteristics.

This is a preview of subscription content, access via your institution.


  1. 1.

    Z. Tesanović and M.V. Jarić: Quantum transport and surface scattering. Phys. Rev. Lett. 57, 2760 (1986).

    Article  Google Scholar 

  2. 2.

    N. Trivedi and N.W. Ashcroft: Quantum-size effects in transport properties of metallic films. Phys. Rev. B 38, 12298 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    A.E. Kaloyeros, E.T. Eisenbraun, J. Welch and R.E. Geer: Exploiting nanotechnology for terahertz interconnects. Semicond. Int. 26, 56 (2003).

    Google Scholar 

  4. 4.

    J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Belyansky, S.J. Souri, K. Banerjee, K.C. Saraswat, A. Rahman, R. Reif and J.D. Meindl: Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. of the IEEE 89, 305 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    S.M. Rossnagel and T.S. Kuan: Alteration of Cu conductivity in the size effect regime. J. Vac. Sci. Technol. B 22, 240 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    S.P. Murarka, I.V. Verner and R.J. Gutmann: Copper—Fundamental Mechanisms for Microelectronic Applications (John Wiley & Sons, New York, 2000).

    Google Scholar 

  7. 7.

    A.E. Kaloyeros and E. Eisenbraun: Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu. Rev. Mater. Sci. 30, 363 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    L. Peters: Making a better copper barrier. Semicond. Int. 26, 50 (2003).

    CAS  Google Scholar 

  9. 9.

    P. Wynblatt: The effects of interfacial segregation on wetting in solid metal-on-metal and metal-on-ceramic systems. Acta Mater. 48, 4439 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    L.E. Murr: Measurement of interfacial energy and energy of adhesion by scanning electron microscopy. Mater. Sci. Eng. 12, 277 (1973).

    CAS  Article  Google Scholar 

  11. 11.

    L.E. Murr: Interfacial energetics in the TD-nickel and TD-nichrome systems. J. Mater. Sci. 9, 1309 (1974).

    CAS  Article  Google Scholar 

  12. 12.

    L.E. Murr: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975), p. 3.

    Google Scholar 

  13. 13.

    L.E. Murr Techniques for measuring adhesive energies in metal/ceramic systems, in Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, edited by K.L. Mittal (ASTM STP 640 West Conshohocken, PA, 1978), pp. 82–98.

  14. 14.

    E.D. Hondros: Interfacial energies and composition in solids, in Precipitation Processes in Solids, Proceedings 1976 TMS Fall Meeting, edited by K.C. Russell and H.I. Aaronson (The Metallurgical Society of AIME, New York, 1978), p. 237.

  15. 15.

    E.D. Hondros: Bonding of metal/ceramic interfaces, in Science of Hard Materials, (Inst. Phys. Conf. Ser. 75 Adam Hilger Ltd., Bristol and Boston, 1984), Chap. 2, p. 121.

    Google Scholar 

  16. 16.

    N. Eustathopoulos, M.G. Nicholas and B. Drevet: Wettability at High Temperatures, Pergamon Materials Series, edited by R.W. Cahn (Kidlington, Oxford, U.K., 1999), pp. 126–130.

    Google Scholar 

  17. 17.

    B.E. Sundquist: A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metall. 12, 67 (1964).

    CAS  Article  Google Scholar 

  18. 18.

    W.L. Winterbottom: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303 (1967).

    CAS  Article  Google Scholar 

  19. 19.

    P.J. Goodhew and D.A. Smith: On surface energy measurement from the shape of small crystals. Scripta Metall. 16, 69 (1982).

    CAS  Article  Google Scholar 

  20. 20.

    M. Drechsler On the equilibrium shape of metal crystals, in Surface Mobilities on Solid Materials: Fundamental Concepts and Applications, Proceedings of a NATO Advanced Study Institute, Series B: Physics, Vol. 86, edited by V.T. Binh (Plenum Press, New York, 1983), pp. 405–457.

  21. 21.

    D. Chatain, V. Ghetta and P. Wynblatt: Equilibrium shape of copper crystals grown on sapphire. Interface Sci. 12, 7 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    M.C. Desjonquères and D. Spanjaard: Concepts in Surface Physics, Springer Series in Surface Sciences, Vol. 30, edited by G. Ertl, R. Gomer, and D.L. Mills (Springer-Verlag, New York (1993), pp. 230–234.

  23. 23.

    F. Bechstedt: Principles of Surface Physics (Springer-Verlag, Berlin, Heidelberg, New York, 2003), pp. 45–63.

    Google Scholar 

  24. 24.

    C. Herring: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87 (1951).

    CAS  Article  Google Scholar 

  25. 25.

    E.D. Hondros The measurement of liquid-vapor and solid-vapor surface energies, in Techniques of Metals Research Vol. IV: Physicochemical Measurements in Metals Research, Part 2, edited by R.A. Rapp (Interscience Publishers, New York, 1970), pp. 293–348.

  26. 26.

    S.M. Foiles, M.I. Baskes and M.S. Daw: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys. Rev. B 33, 7983 (1986).

    CAS  Article  Google Scholar 

  27. 27.

    L. Vitos, A.V. Ruban, H.L. Skriver and J. Kollár: The surface energy of metals. Surf. Sci. 411, 186 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    J.A. Appelbaum and D.R. Hamann: Electronic structure of the Cu(111) surface. Solid State Comm. 27, 881 (1978).

    CAS  Article  Google Scholar 

  29. 29.

    J.G. Gay, J.R. Smith, R. Richter, F.J. Arlinghaus and R.H. Wagoner: Surface energies in d-band metals. J. Vac. Sci. Technol. A 2, 931 (1984).

    Article  Google Scholar 

  30. 30.

    J.M. Howe: Interfaces in Materials (Wiley-Interscience, New York, 1997), p. 176.

    Google Scholar 

  31. 31.

    G.A. Somorjai: Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, New York, 1981), p. 31.

    Google Scholar 

  32. 32.

    R.M. Pilliar and J. Nutting: Solid-solid interfacial energy determinations in metal-ceramic systems. Philos. Mag. 16, 181 (1967).

    CAS  Article  Google Scholar 

  33. 33.

    W. Gutowski Thermodynamics of adhesion, in Fundamentals of Adhesion, edited by L.H. Lee (Plenum Press, New York, 1991), Chap. 2, p. 117.

  34. 34.

    J. Schultz and M. Nardin Theories and mechanisms of adhesion, in Adhesion Promotion Techniques edited by K.L. Mittal and A. Pizzi (Marcel Dekker, New York, 1999), Chap. 1, p. 8.

  35. 35.

    U. Gangopadhyay and P. Wynblatt: Modification of the gold/graphite interfacial energy by interfacial adsorption of nickel. J. Mater. Sci. 30, 94 (1995).

    CAS  Article  Google Scholar 

  36. 36.

    U. Erb, W. Abel and H. Gleiter: The significance of atomic matching for the structure of interphase boundaries. Scripta Metall. 16, 1317 (1982).

    CAS  Article  Google Scholar 

  37. 37.

    G. Hermann, H. Gleiter and G. Baro: Investigation of low energy grain boundaries in metals by a sintering technique. Acta Metall. 24, 353 (1976).

    Article  Google Scholar 

  38. 38.

    J. Shirokoff and U. Erb: Detection of the complete set of preferred orientations of silver on sodium chloride. Scripta Metall. 20, 1607 (1986).

    CAS  Article  Google Scholar 

  39. 39.

    J. Shirokoff, J. Cheung and U. Erb: On the usefullness of epitaxy experiments in evaluating interface models. Acta Metall. Mater. 38, 1273 (1990).

    CAS  Article  Google Scholar 

  40. 40.

    P.J. Goodhew and D.A. Smith: Grooving at grain boundaries in thin films. Scripta Metall. 16, 91 (1982).

    CAS  Article  Google Scholar 

  41. 41.

    J.W. Sprenger, J. Shirokoff and U. Erb: Preferred orientations of fcc metals on amorphous silica. Scripta Metall. 23, 1531 (1989).

    CAS  Article  Google Scholar 

  42. 42.

    C.M. Kennefick and R. Raj: Copper on sapphire: Stability of thin films at 0.7 Tm. Acta Metall. 37, 2947 (1989).

    CAS  Article  Google Scholar 

  43. 43.

    A. Soper, B. Gilles and N. Eustathopoulos: Work of adhesion and orientation relationships at the solid Cu/Al2O3 interface. Mater. Sci. Forum. 207–209, 433 (1996).

    Article  Google Scholar 

  44. 44.

    K. McCafferty, A. Soper, C. Cheung, J. Shirokoff and U. Erb: Effect of temperature on preferred orientation of FCC metals on amorphous silica. Scripta Metall. Mater. 26, 1215 (1992).

    CAS  Article  Google Scholar 

  45. 45.

    A. Soper, K. McCafferty and U. Erb: The effects of temperature and bismuth impurities on preferred orientations of copper and silver on amorphous silica. Phys. Status Solidi A 139, 371 (1993).

    CAS  Article  Google Scholar 

  46. 46.

    Z. Wang and P. Wynblatt: Study of a reaction at the solid Cu/α–SiC interface. J. Mater. Sci. 33, 1177 (1998).

    CAS  Article  Google Scholar 

  47. 47.

    W.R. Cheng and Z.Q. Wu: The TEM and SEM observations of the high temperature behavior of copper alloy films. Chin. Phys. 3, 299 (1983).

    Google Scholar 

  48. 48.

    Y.K. Ko, J.H. Jang, S. Lee, H.J. Yang, W.H. Lee, P.J. Reucroft and J.G. Lee: Effects of molybdenum, silver dopants and a titanium substrate layer on copper film metallization. J. Mater. Sci. 38, 217 (2003).

    CAS  Article  Google Scholar 

  49. 49.

    A. Masten and P. Wissman: Optical studies on thin copper films on Si(111). Appl. Surf. Sci. 179, 68 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    van der O. Straten, Y. Zhu, K. Dunn, E.T. Eisenbraun and A.E. Kaloyeros: Atomic layer deposition of tantalum nitride for ultrathin liner applications in advanced copper metallization schemes. J. Mater. Res. 19, 447 (2004).

    Article  Google Scholar 

  51. 51.

    H.D. Chopra, D.X. Yang, P.J. Chen and W.F. Egelhoff Jr.: Surfactantassisted atomic-level engineering of spin valves. Phys. Rev. B 65, 094433–1 (2002).

    Article  CAS  Google Scholar 

  52. 52.

    M. McLean: Determination of the surface energy of copper as a function of crystallographic orientation and temperature. Acta Metall. 19, 387 (1971).

    CAS  Article  Google Scholar 

  53. 53.

    I.A. Johnston, P.S. Dobson and R.E. Smallman: Void shrinkage and growth in quenched copper, and a determination of the surface energy. Cryst. Latt. Def. 1, 47 (1969).

    CAS  Google Scholar 

  54. 54.

    T. Hara, M. Uchida, M. Fujimoto, T.K. Doy, S. Balakumar and N. Babu: Measurement of adhesion strength in copper interconnection layers. Electrochem. Solid-State Lett. 7, G28 (2004).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alain E. Kaloyeros.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Straten, O., Zhu, Y., Rullan, J. et al. Study of copper-refractory metal interfaces via solid-state wetting for emerging nanoscale interconnect applications. Journal of Materials Research 21, 255–262 (2006).

Download citation