Low-temperature polymer precursor-based synthesis of nanocrystalline particles of lanthanum calcium manganese oxide (La0.67Ca0.33MnO3) with enhanced ferromagnetic transition temperature


We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (Tc) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in Tc.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. von Helmholt, J. Wecker, B. Holzepfel, L. Schultz and K. Samwer: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  2. 2.

    K. Chahara, T. Ohno, M. Kasai and Y. Kozono: Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure Appl. Phys. Lett. 63, 1990 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    Magnetoresistance Colossal Charge Ordering and Related Properties of Manganese Oxides, edited by C.N.R. Rao and R. Raveau (World Scientific, Singapore, 1998).

    Google Scholar 

  4. 4.

    J. Rivas, L.E. Hueso, A. Fondado, F. Rivadullo and Lopez-M.A. Quintela: Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites. J. Magn. Magn. Mater. 21, 57 (2000).

    Article  Google Scholar 

  5. 5.

    Y.H. Huang, Z.G. Xu, C.H. Yan, Z.M. Wang, T. Zhu, C.S. Liao, S. Gao and G.X. Xu: Soft chemical synthesis and transport properties of La0.7Sr0.3MnO3 granular perovskites. Solid State Commun. 114, 43 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    A.K.M. Akther Hossain, L.F. Cohen, F. Damay, A. Berenov, J.M. Driscoll, N.McN. Alford, N.D. Mathur, M.G. Blamire, and J.E. Evetts, Influence of grain size on magnetoresistance of bulk La0.67Ca0.33MnO3-d. J. Magn. Magn. Mater. 192, 263 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    K. Shankar Shantha, S. Kar, G.N. Subbanna and A.K. Raychaudhuri: Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3). Solid State Commun. 129, 479 (2003).

    Article  Google Scholar 

  8. 8.

    N.G. Eeror and H.U. Anderson Polymeric precursor synthesis of ceramic materials, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 173, Pittsburgh, PA, 1986), pp. 571–577.

    Google Scholar 

  9. 9.

    X. Li, H. Zhang, F. Chi, S. Li, B. Xu and M. Zhao: Synthesis of nanocrystalline composite oxides La1xSrxFe1yCoyO3 with the perovskite structure using polyethylene glycol-gel method. Mater. Sci. Eng. B 18, 209 (1993).

    Article  Google Scholar 

  10. 10.

    E.C. Paris, E.R. Leite, E. Longo and J.A. Varela: Synthesis of PbTiO3 by use of polymeric precursors. Mater. Lett. 37, 1 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    De T. Keijser.H., J.I. Langford, E.J. Mittemeijer and A.B.P. Vogels: Use of the Voigt function in a single-line method for the analysis of x-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308 (1982).

    Article  Google Scholar 

  12. 12.

    G. Apai, J.F. Hamilton, J. Stohr and A. Thompson: Extended x-ray absorption fine structure of small Cu and Ni clusters: Binding-energy and bond-length changes with cluster size. Phys. Rev. Lett. 43, 165 (1979).

    CAS  Article  Google Scholar 

  13. 13.

    H.T. Martinera and J.C. Burfoot: Grain size effects on properties of some ferroelectric ceramics. J. Phys. C: Solid State Phys. 7, 3182 (1974).

    Article  Google Scholar 

  14. 14.

    S. Chattopadhyay, P. Ayyub, V.R. Palkar, A.V. Gurjar, R.M. Wankar and M. Multani: Finite-size effects in antiferroelectric PbZrO3 nanoparticles. J. Phys.: Condens. Matter 9, 8135 (1997).

    CAS  Google Scholar 

  15. 15.

    V.D. Noto, D. Longo and V. Munchow: Ion-oligomer interactions in poly(ethylene glycol)400/(LiCl)x electrolyte complexes. J. Phys. Chem. B 103, 2636 (1999).

    Article  Google Scholar 

  16. 16.

    C. Vazquez-Vazquez, M.C. Blanco, M. Lopez Arturo, R.D. Sanchez, J. Rivas and S.B. Oseroff: Characterization of La0.67Ca0.33MnO3 particles prepared by the sol-gel route. J. Mater. Chem. 8, 991 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    T. Yi, S. Gao, X. Qi, Y. Zhu, F. Cheng, Y. Huang, C. Liao and C. Yan: Low-temperature synthesis and magnetism of La0.75Ca0.25MnO3 nanoparticles. J. Phys. Chem. Solids 61, 1407 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    I.B. Shim, S.Y. Bae, Y.J. Oh and S.Y. Choi: Magnetic homogeneity in colossal magnetoresistive La0.67Ca0.33MnO3-d perovskite ceramics. Solid State Ionics 108, 241 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    J. Weissmuller and J.W. Cahn: Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids. Acta Mater. 45, 1899 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    A. Congeduti, P. Postorino, E. Caramagno, M. Nardone, A. Kumar and D.D. Sarma: Anomalous high pressure dependence of the Jahn-Teller phonon in La0.75Ca0.25MnO3. Phys. Rev. Lett. 86, 1251 (2001).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. K. Raychaudhuri.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shantha Shankar, K., Raychaudhuri, A.K. Low-temperature polymer precursor-based synthesis of nanocrystalline particles of lanthanum calcium manganese oxide (La0.67Ca0.33MnO3) with enhanced ferromagnetic transition temperature. Journal of Materials Research 21, 27–33 (2006). https://doi.org/10.1557/jmr.2006.0031

Download citation