Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine

Abstract

In this paper, we demonstrate that films of magnetite, Fe3O4, can be deposited by the electrochemical reduction of a Fe(III)-triethanolamine complex in aqueous alkaline solution. The films were deposited with a columnar microstructure and a [100] preferred orientation on stainless steel substrates. In-plane electrical transport and magnetoresistance measurements were performed on the films after they were stripped off onto glass substrates. The resistance of the films was dependent on the oxygen partial pressure. We attribute the increase in resistance in O2 and the decrease in resistance in Ar to the oxidation and reduction of grain boundaries. The decrease in resistance in an Ar atmosphere exhibited first-order kinetics, with an activation energy of 0.2 eV. The temperature dependence of the resistance showed a linear dependence of log(R) versus T−1/2, consistent with tunneling across resistive grain boundaries. A room-temperature magnetoresistance of −6.5% was observed at a magnetic field of 9 T.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    Z. Zhang and S. Satpathy: Electron-states, magnetism, and the Verwey transition in magnetite. Phys. Rev. B 44, 13319 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    V.I. Anisimov, I.S. Elfimov, N. Hamada and K. Terakura: Charge-ordered insulating state of Fe3O4 from first-principles electronic-structure calculations. Phys. Rev. B 54, 4387 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    Y.S. Dedkov, U. Rudiger and G. Guntherodt: Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 65, 064417 (2002).

    Article  CAS  Google Scholar 

  4. 4.

    T.A. Sorenson, S.A. Morton, D.G. Waddill and J.A. Switzer: Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J. Am. Chem. Soc. 124, 7604 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    G. Hu and Y. Suzuki: Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    X.W. Li, A. Gupta, G. Xiao, W. Qian and V.P. Dravid: Fabrication and properties of heterojunction magnetite (Fe3O4) tunnel junctions. Appl. Phys. Lett. 73, 3282 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    J.M.D. Coey, A.E. Berkowitz, L. Balcells, F.F. Putris and F.T. Parker: Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    D. Serrate, De J.M. Teresa, P.A. Algarabel, Fernandez-R. Pacheco, J. Galibert and M.R. Ibarra: Grain-boundary magnetoresistance up to 42 T in cold-pressed Fe3O4 nanopowders. J. Appl. Phys. 97, 084317 (2005).

    Article  CAS  Google Scholar 

  9. 9.

    Y. Kitamoto, Y. Nakayama and M. Abe: Spin-dependent intergranular transport in magnetite films deposited by ferrite plating. J. Appl. Phys. 87, 7130 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    W. Eerenstein, T.T.M. Palstra, S.S. Saxena and T. Hibma: Spin-polarized transport across sharp antiferromagnetic boundaries. Phys. Rev. Lett. 88, 247204 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    J.J. Versluijs, M.A. Bari and J.M.D. Coey: Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 87, 026601 (2001).

    Article  CAS  Google Scholar 

  12. 12.

    G.Q. Gong, A. Gupta, G. Xiao, W. Qian and V.P. Dravid: Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B 56, 5096 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    X.W. Li, A. Gupta, G. Xiao and G.Q. Gong: Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films. J. Appl. Phys. 83, 7049 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    S.B. Ogale, K. Ghosh, R.P. Sharma, R.L. Greene, R. Ramesh and T. Venkatesan: Magnetotransport anisotropy effects in epitaxial magnetite (Fe3O4) thin films. Phys. Rev. B 57, 7823 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    J. Tang, K.Y. Wang and W. Zhou: Magnetic properties of nanocrystalline Fe3O4 films. J. Appl. Phys. 89, 7690 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    J.F. Anderson, M. Kuhn, U. Diebold, K. Shaw, P. Stoyanov and D. Lind: Surface structure and morphology of Mg-segregated epitaxial Fe3O4(001) thin films on MgO(001). Phys. Rev. B 56, 9902 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    K.A. Shaw, E. Lochner and D.M. Lind: Interdiffusion study of magnesium in magnetite thin films grown on magnesium oxide (001) substrates. J. Appl. Phys. 87, 1727 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    R.F.C. Farrow, P.M. Rice, M.F. Toney, R.F. Marks, J.A. Hendstrom, R. Stephenson, M.J. Carey and A.J. Kellock: Nanoscale phase separation in Fe3O4(111) films on sapphire0001 and phase stability of Fe3O4(001) films on MgO(001) grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 93, 5626 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    W. Weiss and M. Ritter: Metal oxide heteroepitaxy: Stranski-Krastanov growth for iron oxides on Pt(111). Phys. Rev. B 59, 5201 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    R.L. Kurtz, J. Karunamuni and R.L. Stockbauer: Synthesis of epitaxial Fe3O4 films on Cu(001). Phys. Rev. B 60, 16342 (1999).

    Article  Google Scholar 

  21. 21.

    J.A. Switzer, M.G. Shumsky and E.W. Bohannan: Electrodeposited ceramic single crystals. Science 284, 293 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    E.W. Bohannan, M.G. Shumsky and J.A. Switzer: Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100). Chem. Mater. 11, 2289 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    M.P. Nikiforov, A.A. Vertegel, M.G. Shumsky and J.A. Switzer: Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111). Adv. Mater. 12, 1351 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson and J.A. Switzer: Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13, 508 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    J.A. Switzer, H.M. Kothari and E.W. Bohannan: Thermodynamic to kinetic transition in epitaxial electrodeposition. J. Phys. Chem. B 106, 4027 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    H.M. Kothari, A.A. Vertegel, E.W. Bohannan and J.A. Switzer: Epitaxial electrodeposition of Pb–Tl–O superlattices on single-crystal Au(100). Chem. Mater. 14, 2750 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    R. Liu, E.W. Bohannan, J.A. Switzer, F. Oba and F. Ernst: Epitaxial electrodeposition of Cu2O films onto InP(001). Appl. Phys. Lett. 83, 1944 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    S. Nakanishi, G.T. Lu, H.M. Kothari, E.W. Bohannan and J.A. Switzer: Epitaxial electrodeposition of Prussian Blue thin films on single-crystal Au(110). J. Am. Chem. Soc. 125, 14998 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    R. Liu, F. Oba, E.W. Bohannan, F. Ernst and J.A. Switzer: Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001). Chem. Mater. 15, 4882 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    J.A. Switzer, H.M. Kothari, P. Poizot, S. Nakanishi and E.W. Bohannan: Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    E.W. Bohannan, H.M. Kothari, I.M. Nicic and J.A. Switzer: Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111). J. Am. Chem. Soc. 126, 488 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst and J.A. Switzer: Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111). Chem. Mater. 17, 725 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    F. Oba, F. Ernst, Y. Yu, R. Liu, H.M. Kothari and J.A. Switzer: Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates. J. Am. Ceram. Soc. 88, 253 (2005).

    CAS  Article  Google Scholar 

  34. 34.

    M. Abe: Ferrite plating: A chemical method preparing oxide magnetic films at 24–100 °C, and its applications. Electrochim. Acta 45, 3337 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    M. Abe and Y. Tamura: Ferrite-plating in aqueous solution: A new method for preparing magnetic thin film. Jpn. J. Appl. Phys. 22, L511 (1983).

    Article  Google Scholar 

  36. 36.

    D. Carlier, C. Terrier, C. Arm and J.P. Ansermet: Preparation and magnetic properties of Fe3O4 nanostructures grown by electrodeposition. Electrochem. Solid State Lett. 8, C43 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    R.S. Sapieszko and E. Matijevic: Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides. J. Colloid Interface Sci. 74, 405 (1980).

    CAS  Article  Google Scholar 

  38. 38.

    C. Ruby, C. Humbert and J. Fusy: Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf. Interface Anal. 29, 377 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    S.A. Krasnikov, A.S. Vinogradov, K.H. Hallmeier, HöR. hne, M. Ziese, P. Esquinazi, T. Chassé and R. Szargan: Oxidation effects in epitaxial Fe3O4 layers on MgO and MgAl2O4 substrates studied by x-ray absorption, fluorescence, and photoemission. Mater. Sci. Eng. B 109, 207 (2004).

    Article  CAS  Google Scholar 

  40. 40.

    J.P. Saunders and P.K. Gallagher: Thermomagnetometric evidence of γ–Fe2O3 as an intermediate in the oxidation of magnetite. Thermochim. Acta 406, 241 (2003).

    Article  CAS  Google Scholar 

  41. 41.

    K.J. Gallagher, W. Feitknecht and U. Mannweler: Mechanism of oxidation of magnetite to γ–Fe2O3. Nature 217, 1118 (1968).

    CAS  Article  Google Scholar 

  42. 42.

    P.S. Sidhu, R.J. Gilkes and A.M. Posner: Mechanism of the low temperature oxidation of synthetic magnetites. J. Inorg. Nucl. Chem. 39, 1953 (1977).

    CAS  Article  Google Scholar 

  43. 43.

    J. Tang, M. Myers, K.A. Bosnick and L.E. Brus: Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 7501 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    P. Sheng, B. Abeles and Y. Arie: Hopping conductivity in granular metals. Phys. Rev. Lett. 31, 44 (1973).

    CAS  Article  Google Scholar 

  45. 45.

    H. Liu, E.Y. Jiang, H.L. Bai, R.K. Zheng, H.L. Wei and X.X. Zhang: Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe3O4 films. Appl. Phys. Lett. 83, 3531 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    W. Eerenstein, T.T.M. Palstra, T. Hibma and S. Celotto: Origin of the increased resistivity in epitaxial Fe3O4 films. Phys. Rev. B 66, 201101 (R) (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay A. Switzer.

Additional information

Address all correspondence to this author.

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kothari, H.M., Kulp, E.A., Limmer, S.J. et al. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine. Journal of Materials Research 21, 293–301 (2006). https://doi.org/10.1557/jmr.2006.0030

Download citation