Tribological Behavior of Polymers Simulated by Molecular Dynamics

Abstract

Using molecular dynamics to simulate behavior of polymer surfaces during scratch testing, we report the first results of computer simulations of scratch behavior of noncrystals. A previously described procedure for creating realistic polymeric materials on the computer [W. Brostow, A.M. Cunha, and R. Simoes, Mater. Res. Innovat. 7, 19 (2003)] and used until now to simulate mechanical behavior of metals [S. Blonski, W. Brostow, and J. Kubat, Phys. Rev. B 49, 6494 (1994)] and one- and two-phase polymers [W. Brostow, A.M. Cunha, J. Quintanilla, and R. Simoes, Macromol. Theory Simul. 11, 308 (2002); W. Brostow, A.M. Cunha, and R. Simoes, Proc. Ann. Tech. Conf. Soc. Plastics Engrs. 60, 3105 (2002)] was applied. While experiments provide only the macroscopic penetration depth and the recovery (healing) depth, the simulations give the behavior of each macromolecular chain segment at each moment in time. We report results for one-phase polymers and also for systems with varying concentrations of a liquid crystalline (LC) second-phase that acts as a reinforcement. We relate the local structure to scratch resistance and recovery. The orientation of the chemical bonds is a major factor. The presence of a LC phase improves the tribological properties; however, the effect is not as significant as might have been expected.

This is a preview of subscription content, access via your institution.

References

  1. 1

    E. Rabinowicz, Friction and Wear of Materials, 2nd ed. (Wiley, New York, 1995).

  2. 2

    Matériaux et contacts: une approche tribologique, edited by G. Zambelli and L. Vincent (Presses polytechniques universitaires romandes, Lausanne, 1998).

  3. 3

    A.Y. Goldman, Prediction of Deformation Properties of Polymeric and Composite Materials (American Chemical Society, Washington, DC, 1994).

  4. 4

    W. Brostow, G. Damarla, J.A. Howe, and D. Pietkiewicz (unpublished).

  5. 5

    Failure of Plastics, edited by W. Brostow and R.D. Corneliussen (Hanser, Munich—Vienna—New York, 1986).

  6. 6

    Performance of Plastics, edited by W. Brostow (Hanser, Munich—Cincinnati, 2000).

  7. 7

    W. Brostow, B. Bujard, P.E. Cassidy, H.E. Hagg, and P.E. Montemartini, Mater. Res. Innovat. 6, 7 (2002).

    CAS  Article  Google Scholar 

  8. 8

    W. Brostow, B. Bujard, P.E. Cassidy, and S. Venumbaka, Int. J. Polym. Mater. (2003, in press).

  9. 9

    S. Blonski, W. Brostow, and J. Kubat, Phys. Rev. B 49, 6494 (1994).

    CAS  Article  Google Scholar 

  10. 10

    W. Brostow, A.M. Cunha, J. Quintanilla, and R. Simoes, Macro-mol. Theory Simul. 11, 308 (2002).

    CAS  Article  Google Scholar 

  11. 11

    W. Brostow, A.M. Cunha, and R. Simoes, Proc. Ann. Tech. Conf. Soc. Plastics Engrs. 60, 3105 (2002).

    Google Scholar 

  12. 12

    S. Fossey, in Performance of Plastics, edited by W.Brostow (Hanser, Munich—Cincinnati, 2000), p. 63.

  13. 13

    Y. Termonia, Macromolecules 27, 7378 (1994).

    CAS  Article  Google Scholar 

  14. 14

    K.J. Tupper and D.W. Brenner, Thin Solid Films 253, 185 (1994).

    CAS  Article  Google Scholar 

  15. 15

    A. Koike and M. Yoneya, J. Chem. Phys. 105, 6060 (1996).

    CAS  Article  Google Scholar 

  16. 16

    E. Gerde and M. Marder, Nature 413, 285 (2001).

    CAS  Article  Google Scholar 

  17. 17

    R. Komanduri, N. Chandrasekaran, and L.M. Raff, Wear 240, 113 (2000).

    CAS  Article  Google Scholar 

  18. 18

    B.J. Alder and T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957).

    CAS  Article  Google Scholar 

  19. 19

    W. Brostow, M. Donahue III, C.E. Karashin, and R. Simoes, Mater. Res. Innovat. 4, 75 (2001).

    CAS  Article  Google Scholar 

  20. 20

    R. Cook and M.B. Mercer, Mater. Chem. Phys. 12, 571 (1985).

    CAS  Article  Google Scholar 

  21. 21

    R. Cook, J. Polymer Sci. 26, 1988 (1988).

    Google Scholar 

  22. 22

    S. Blonski and W. Brostow, J. Chem. Phys. 95, 2890 (1991).

    CAS  Article  Google Scholar 

  23. 23

    V. Mom, J. Comput. Chem. 2, 446 (1981).

    CAS  Article  Google Scholar 

  24. 24

    P.J. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).

  25. 25

    W. Brostow, A.M. Cunha, and R. Simoes, Mater. Res. Innovat. 7, 19 (2003).

    CAS  Article  Google Scholar 

  26. 26

    W. Brostow, T.S. Dziemianowicz, J. Romanski, and W. Werber, Polymer Eng. Sci. 28, 785 (1998).

    Article  Google Scholar 

  27. 27

    A.Y. Goldman, in Performance of Plastics, edited by W. Brostow (Hanser, Munich—Cincinnati, 2000), Chapter 7.

  28. 28

    A.Y. Goldman and K. Venkatashan, Proc Ann Tech Conf Soc Plastics Engrs. 60, 1363 (2002).

    Google Scholar 

  29. 29

    W. Brostow, T.S. Dziemianowicz, R. Romanski, and W. Werber, Polymer Eng. Sci. 28, 785 (1988).

    CAS  Article  Google Scholar 

  30. 30

    M. Hess, in Performance of Plastics, edited by W. Brostow (Hanser, Munich—Cincinnati, 2000), p. 519.

  31. 31

    R.J. Good, in Contact Angle, Wettability and Adhesion, edited by K.L. Mittal (VSP, New York, 1993), Chapter 1.

  32. 32

    W. Brostow, P.E. Cassidy, J. Macossay, D. Pietkiewicz, and S. Venumbaka, Polymer Int. 52, 1498 (2003).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brostow, W., Hinze, J.A. & Simões, R. Tribological Behavior of Polymers Simulated by Molecular Dynamics. Journal of Materials Research 19, 851–856 (2004). https://doi.org/10.1557/jmr.2004.19.3.851

Download citation