Direct Focused Ion Beam Drilling of Nanopores

Abstract

Focused 30keV gallium ion beam, single-pixel drilling combined with backside particle detection is used to fabricate pores having exit diameters as small as ~11 nm in 200 nm-thick silicon nitride membranes. The backside channelplate detector response obtained about the onset of breakthrough is interpreted by plan-view transmission electron microscopy investigations of hole morphology. Immediately prior to breakthrough, there is a rise in detector signal as the local membrane thickness is reduced. This likely occurs as a result of ion transmission and, possibly, forward sputtering. At the dose required for breakthrough a maximum detector signal is obtained thus providing a potential method for end point detection. The focused ion drilling technique avoids broad area beam exposure methods that are often used to reduce hole diameter to nanometer dimension. In addition, the current approach overcomes difficulties in determining a required dose for breakthrough such as those that arise from an inhomogeneous membrane thickness, redeposition, or ion channeling.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Nature, 412, 166 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    J. Li, M. Gershow, D. Stein, E. Brandin and J.A. Golovchenko, Nat. Mater. 2, 611 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko and J. Li, Nanoletters 5, 1905 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Chen, D.P. Adams, M.J. Vasile, Nanguo Liu, Y. Jiang, G. Xomeritakes, and C.J. Brinker, Mat. Res. Soc. Symp. Proc. 921E (Warrendale, PA, 2006), 0921-TO5-29.

    Google Scholar 

  5. 5.

    R.R. Henriquez, T. Ito, L. Sun and R.M. Crooks, Analyst, 129, 478 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    C. Lehrer, L. Frey, S. Petersen, Th. Sulzbach, O. Ohlsson, Th. Dziomba, H.U. Danzebrink, and H. Ryssel, Microelect. Engin. 57–58, 721 (2001).

    Article  Google Scholar 

  7. 7.

    T. Schenkel, V. Radmilovic, E.A. Stach, S.-J. Park, A. Persaud, J. Va. Sci. Tech. B 21, 2720 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    J.A. Veerman, A.M. Otter, L. Kuipers, and N.F. van Hulst, Appl. Phys. Lett. 72, 3115 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Siwy and A. Fuliski, Phys. Rev. Lett. 89, 198103 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    M.E. Mochel, J.A. Eades, M. Metzger, J.I. Meyer, and J.M. Mochel, Appl. Phys. Lett. 44, 502 (1984).

    CAS  Article  Google Scholar 

  11. 11.

    D.M. Stein, C.J. McMullan, J. Li, and J.A. Golovchenko, Rev. Sci. Instrum. 75, 900 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    T. Mitsui, D. Stein, Y.-R. Kim, D. Hoogerheide and J.A. Golovchenko, Phys. Rev. Lett. 96, 036102–1 (2006).

    Article  Google Scholar 

  13. 13.

    A.-L. Biance, J. Gierak, É. Bourhis, A. Madouri, X. Lafosse, G. Patriarche, G. Oukhaled, C. Ulysse, J.-C. Galas, Y. Chen and L. Auvray, Microelect. Engin. 83, 1474 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    C.J. Lo, T. Aref and A. Bezryadin, Nanotech. 17, 3264 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    J. Nilsson, J.R.I. Lee, T.V. Ratto and S.E. Létant, Adv. Mater. 18, 427 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon and D. Branton, Nanoletters, 4, 1333 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    D. Stein, J. Li, and J.A. Golovchenko, Phys. Rev. Lett. 89, 276106–1 (2002).

    Article  Google Scholar 

  18. 18.

    A single point is created (in registry) by drawing a 0.02-µm long line and commanding a -10000 % overlap.

  19. 19.

    Rate is determined in separate experiments by milling low aspect ratio 30 × 30 µm features.

  20. 20.

    D.P. Adams, M.J. Vasile and T.M. Mayer, J. Vac. Sci. Technol. B 24, 1766 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nick Patterson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patterson, N., Hodges, V.C., Vasile, M.J. et al. Direct Focused Ion Beam Drilling of Nanopores. MRS Online Proceedings Library 983, 505 (2006). https://doi.org/10.1557/PROC-983-0983-LL05-05

Download citation