Skip to main content
Log in

Direct Focused Ion Beam Drilling of Nanopores

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Focused 30keV gallium ion beam, single-pixel drilling combined with backside particle detection is used to fabricate pores having exit diameters as small as ~11 nm in 200 nm-thick silicon nitride membranes. The backside channelplate detector response obtained about the onset of breakthrough is interpreted by plan-view transmission electron microscopy investigations of hole morphology. Immediately prior to breakthrough, there is a rise in detector signal as the local membrane thickness is reduced. This likely occurs as a result of ion transmission and, possibly, forward sputtering. At the dose required for breakthrough a maximum detector signal is obtained thus providing a potential method for end point detection. The focused ion drilling technique avoids broad area beam exposure methods that are often used to reduce hole diameter to nanometer dimension. In addition, the current approach overcomes difficulties in determining a required dose for breakthrough such as those that arise from an inhomogeneous membrane thickness, redeposition, or ion channeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Nature, 412, 166 (2001).

    Article  CAS  Google Scholar 

  2. J. Li, M. Gershow, D. Stein, E. Brandin and J.A. Golovchenko, Nat. Mater. 2, 611 (2003).

    Article  CAS  Google Scholar 

  3. D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko and J. Li, Nanoletters 5, 1905 (2005).

    Article  CAS  Google Scholar 

  4. Z. Chen, D.P. Adams, M.J. Vasile, Nanguo Liu, Y. Jiang, G. Xomeritakes, and C.J. Brinker, Mat. Res. Soc. Symp. Proc. 921E (Warrendale, PA, 2006), 0921-TO5-29.

    Google Scholar 

  5. R.R. Henriquez, T. Ito, L. Sun and R.M. Crooks, Analyst, 129, 478 (2004).

    Article  CAS  Google Scholar 

  6. C. Lehrer, L. Frey, S. Petersen, Th. Sulzbach, O. Ohlsson, Th. Dziomba, H.U. Danzebrink, and H. Ryssel, Microelect. Engin. 57–58, 721 (2001).

    Article  Google Scholar 

  7. T. Schenkel, V. Radmilovic, E.A. Stach, S.-J. Park, A. Persaud, J. Va. Sci. Tech. B 21, 2720 (2003).

    Article  CAS  Google Scholar 

  8. J.A. Veerman, A.M. Otter, L. Kuipers, and N.F. van Hulst, Appl. Phys. Lett. 72, 3115 (1998).

    Article  CAS  Google Scholar 

  9. Z. Siwy and A. Fuliski, Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  10. M.E. Mochel, J.A. Eades, M. Metzger, J.I. Meyer, and J.M. Mochel, Appl. Phys. Lett. 44, 502 (1984).

    Article  CAS  Google Scholar 

  11. D.M. Stein, C.J. McMullan, J. Li, and J.A. Golovchenko, Rev. Sci. Instrum. 75, 900 (2004).

    Article  CAS  Google Scholar 

  12. T. Mitsui, D. Stein, Y.-R. Kim, D. Hoogerheide and J.A. Golovchenko, Phys. Rev. Lett. 96, 036102–1 (2006).

    Article  Google Scholar 

  13. A.-L. Biance, J. Gierak, É. Bourhis, A. Madouri, X. Lafosse, G. Patriarche, G. Oukhaled, C. Ulysse, J.-C. Galas, Y. Chen and L. Auvray, Microelect. Engin. 83, 1474 (2006).

    Article  CAS  Google Scholar 

  14. C.J. Lo, T. Aref and A. Bezryadin, Nanotech. 17, 3264 (2006).

    Article  CAS  Google Scholar 

  15. J. Nilsson, J.R.I. Lee, T.V. Ratto and S.E. Létant, Adv. Mater. 18, 427 (2006).

    Article  CAS  Google Scholar 

  16. P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon and D. Branton, Nanoletters, 4, 1333 (2004).

    Article  CAS  Google Scholar 

  17. D. Stein, J. Li, and J.A. Golovchenko, Phys. Rev. Lett. 89, 276106–1 (2002).

    Article  Google Scholar 

  18. A single point is created (in registry) by drawing a 0.02-µm long line and commanding a -10000 % overlap.

  19. Rate is determined in separate experiments by milling low aspect ratio 30 × 30 µm features.

  20. D.P. Adams, M.J. Vasile and T.M. Mayer, J. Vac. Sci. Technol. B 24, 1766 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, N., Hodges, V.C., Vasile, M.J. et al. Direct Focused Ion Beam Drilling of Nanopores. MRS Online Proceedings Library 983, 505 (2006). https://doi.org/10.1557/PROC-983-0983-LL05-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-983-0983-LL05-05

Navigation