Interface-Stabilized Nanoscale Quasi-Liquid Films and Interfacial Prewetting and Premelting Transitions


Equilibrium-thickness, intergranular films (IGFs) have been observed in various ceramic materials. Recently, surficial amorphous films (SAFs) of similar character have also been found. Furthermore, a series of studies revealed the stabilization of disordered (quasi-liquid) IGFs and SAFs well below the bulk solidus or eutectic temperatures, wherein analogies to the phenomena of premelting and prewetting can be made. Accordingly, combined interfacial premelting and prewetting models have been developed using a diffuse-interface theory. This paper outlines the key results of two model experiments in support of the above theory: namely observation of quasi-liquid grain boundary films (metallic IGFs) in W-Ni and searching of a complete wetting transition for Bi2O3 on ZnO where SAFs become macroscopically thick. We propose that simple combined interfacial premelting and prewetting models apply to metallic IGFs, but only serve as a basis to understand IGFs and SAFs in ceramics where additional interactions, e.g. dispersion forces and space-charges, should be added separately and may result in more complex behaviors.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. R. Clarke, J. Am. Ceram. Soc. 70, 15 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    A. Subramaniam et al., Mater. Sci. Eng., A 422, 3 (2006).

  3. 3.

    R. M. Cannon, and L. Esposito, Z. Metallkd. 90, 1002 (1999).

    CAS  Google Scholar 

  4. 4.

    J. Luo, and Y.-M. Chiang, J. Eur. Ceram. Soc. 19, 697 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J. Luo, and Y.-M. Chiang, Acta Mater. 48, 4501 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    J. Luo et al., Mater. Sci. Eng. A 422, 19 (2006).

    Article  Google Scholar 

  7. 7.

    J. Luo, Y.-M. Chiang, and R. M. Cannon, Langmuir 21, 7358 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    C. M. Bishop, R. M. Cannon, and W. C. Carter, Acta Mater. 53, 4755 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    C. M. Bishop et al., Mater. Sci. Eng., A 422, 102 (2006).

    Article  Google Scholar 

  10. 10.

    M. Tang, W. C. Carter, and R. M. Cannon, Phys. Rev. Lett. 97, 075502 (2006).

    Article  Google Scholar 

  11. 11.

    J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).

    CAS  Article  Google Scholar 

  12. 12.

    J. G. Dash, Contemp. Phys. 30, 89 (1989).

    CAS  Article  Google Scholar 

  13. 13.

    J. G. Dash, A. M. Rempel, and J. S. Wettlaufer, Rev. Mod. Phys. 78, 695 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    J. Luo, V. K. Gupta, and D. H. Yoon, Appl. Phys. Lett. 87, 231902 (2005).

    Article  Google Scholar 

  15. 15.

    J. Luo, H. Wang, and Y.-M. Chiang, J. Am. Ceram. Soc. 82, 916 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    E. Saiz, A. P. Tomsia, and R. M. Cannon, Acta Mater. 46, 2349 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    B. B. Straumal, and B. Baretzky, Interf. Sci. 12, 147 (2004).

    Article  Google Scholar 

  18. 18.

    Y. Liu et al., Metall. Mater. Trans. A 26A, 2484 (1993).

  19. 19.

    E. Bertrand et al., Phys. Rev. Lett. 85, 1282 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Y.-M. Chiang, H. Wang, and J.-R. Lee, J. Microsc. 191, 275 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    J. R. Lee and Y.-M. Chiang, unpublished work.

Download references

Author information



Corresponding author

Correspondence to Jian Luo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, J., Gupta, V.K. & Qian, H. Interface-Stabilized Nanoscale Quasi-Liquid Films and Interfacial Prewetting and Premelting Transitions. MRS Online Proceedings Library 979, 408 (2006).

Download citation