Skip to main content
Log in

Measurement of Stress-strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, we explore the use of nanoindentation techniques as a method of measuring equivalent stress-strain curves of the PECVD SiOx thin films. Three indenter tips with different geometries were adopted in our experiments, enabling us to probe different regimes of plastic deformation in the PECVD SiOx thin films. A shear transformation zone (STZ) based amorphous plasticity theory is applied to depict the underlying plastic deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Boca Raton, 2002).

    Book  Google Scholar 

  2. A. H. Epstein and S.D. Senturia, Science 276, 1211 (1997).

    Article  CAS  Google Scholar 

  3. Z. Cao and X. Zhang, J. Appl. Phys. 96, 4273 (2004) and the references therein.

    Article  CAS  Google Scholar 

  4. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, New York, 2004).

    Book  Google Scholar 

  5. W. C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004) and the references therein.

    Article  CAS  Google Scholar 

  6. A. K. Bhattacharya and W D Nix, Int. J. Solids Structures 24, 1287 (1988).10.1016/0020-7683(88)90091-1

    Article  Google Scholar 

  7. A. F. Bower, N.A. Fleck, A. Needleman and N. Ogbonna, Proc. R. Soc. Lond. A 441, 97 (1993).

    Article  Google Scholar 

  8. H. Li and A.H.W. Ngan, J. Mater. Res. 19, 513 (2004).

    Article  CAS  Google Scholar 

  9. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.

    Google Scholar 

  10. K. L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  11. R. Hill, Proc. R. Soc. Lond. A 436 617 (1992).

    Article  Google Scholar 

  12. W. H. Poisl, W.C. Oliver and B.D. Fabes, J. Mater. Res. 10, 2024 (1995).

    Article  CAS  Google Scholar 

  13. B. Storåkers and P.L. Larsson, J. Mech. Phys. Solids 42, 307 (1994).

    Article  Google Scholar 

  14. F. Spaepen, Acta Metall. 25, 407 (1977).10.1016/0001-6160(77)90232-2

    Article  CAS  Google Scholar 

  15. A. S. Argon, Acta Metall, 27, 47 (1979).

    Article  CAS  Google Scholar 

  16. M. L. Falk and J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  17. J. S. Langer, Phys. Rev. E 64, 011504 (2001).

    Article  CAS  Google Scholar 

  18. E. Martínez, J. Romero, A. Lousa and J. Esteve, Appl. Phys. A 77, 419 (2003).

    Article  Google Scholar 

  19. T. H. Courtney, Mechanical Behavior of Materials, 2nd ed., McGraw Hill Press, Boston, 2000.

    Google Scholar 

  20. D. C. Drucker, Proc. 1st US Natl. Congress Appl. Mech (Chicago, 1951), p.487, A.S.M.E. Press, New York, 1952.

    Google Scholar 

  21. C. A. Schuh and T.G. Nieh, J. Mater. Res. 19, 46 (2004) and the references therein.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Zhang, X. Measurement of Stress-strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation. MRS Online Proceedings Library 977, 423 (2006). https://doi.org/10.1557/PROC-977-0977-FF04-23

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-977-0977-FF04-23

Navigation