Semiconductor Crystal Growth and Segregation Problems on Earth and in Space

Abstract

Crystals grown from the melt exhibit compositional and structural defects which limit the exploitation qf their full potential in solid state electronics. The origin of these defects is related primarily to gravity-induced convective currents in the melt. In semiconductor compounds additional problems are introduced from variations in stoichiometry. Progress has been made recently in relating qualitatively, and in some instances quantitatively, the growth parameters to the materials properties of the crystals, and in turn to their electronic properties. Overcoming the presence of gravitational forces in space eliminates or minimizes convective interference and, thus, the quantitative assessment of the key growth parameters controlling the chemical and structural perfection of single crystals becomes possible. Results (obtained on earth) will be presented on the growth-property relationships of elemental and compound semiconductors. The advantages, as well as the limitations, that zero gravity conditions present for crystal growth will be discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    See, for example, Semiconductor Silicon 1981, H.R. Huff, R.J. Kriegler and Y. Takeishi, eds., (The Electrochemical Society, Inc., Princeton, N.J., 1981).

  2. 2.

    See, for example, Gallium Arsenide and Related Compounds 1978 (Conference Series, The Institute of Physics, Bristol and London).

  3. 3.

    P.R. Camp, J. Appl. Phys. 25, 459 (1954); E. Billig, Proc. Roy. Soc. (London) 229, 346 (1955).

    CAS  Article  Google Scholar 

  4. 4.

    H.C. Gatos, A.J. Strauss, M.C. Lavine and T.C. Harman, J. Appl. Phys. 32, 2057 (1961).

    CAS  Article  Google Scholar 

  5. 5.

    A. F. Witt and H.C. Gatos, J. Electrochem. Soc. ID, 808 (1966).

    Google Scholar 

  6. 6.

    K.M. Kim, A.F. Witt and H.C. Gatos, J. Electrochem. Soc. 119, 1218 (1972).

    CAS  Article  Google Scholar 

  7. 7.

    D.E. Holmes and H.C. Gatos, J. Electrochem. Soc. 128, 429 (1981).

    CAS  Article  Google Scholar 

  8. 8.

    D.E. Holmes and H.C. Gatos, J. Appl. Phys. 52, 2971 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    A. Murgai, H.C. Gatos and W.A. Westdorp, J. Electrochem. Soc. 126, 2240 (1979).

    CAS  Article  Google Scholar 

  10. 10.

    J.A. Burton, R.C. Prim and W.P. Slichter, J. Chem. Phys. 21, 1987 (1953).

    CAS  Article  Google Scholar 

  11. 11.

    A. Murgai, H.C. Gatoe and A.F. Witt, J. Electrochem. Soc. 123, 224 (1975).

    Article  Google Scholar 

  12. 12.

    J.Y. Chi and H.C. Gatos, J. Appl. Phys. 50, 3433 (1979).

    CAS  Article  Google Scholar 

  13. 13.

    L. Jastrzebski, J. Lagowski and H.C. Gatos, J. Electrochem. Soc. 126, 260 (1979).

    CAS  Article  Google Scholar 

  14. 14.

    L. Jastrzebski, J. Lagowski, W. Walukiewicz and H.C. Gatos, J. Appl. Phys. 51, 2301 (1980).

    CAS  Article  Google Scholar 

  15. 15.

    J.M. Parsey, Y. Nanishi, J. Lagowski and H.C. Gatos, J. Electrochem. Soc., in press.

  16. 16.

    T. Suzuki, S. Akai, K. Kohe, Y. Nishida, K. Fujita and N. Kito, Sumitomo Electric Technical Review 18, 105 (1978).

    Google Scholar 

  17. 17.

    J. Lagowski, H.C. Gatos, J.M. Parsey, K. Wada, M. Kaminska and W. Walukiewicz, Appl. Phys. Lett., in press.

  18. 18.

    A.G. Milnes, Deep Impurities in Semiconductors, Wiley, New York, 1973, p. 57.

    Google Scholar 

  19. 19.

    A.M. Huber, N.T. Linh, M. Valldon, J.L. Debrun, G.M. Martin, A. Mitonneau and A. Mircea, J. Appl. Phys. 50, 4022 (1979).

    CAS  Article  Google Scholar 

  20. 20.

    M. Kaminska, J. Lagowski, J. Parsey, K. Wada and H.C. Gatos, Gallium Arsenide and Related Compounds 1981, (Conference Series, The Institute of Physics, Bristol and London) in press.au]20._M. Kaminska, J. Lagowski, J. Parsey, K. Wada and H.C. Gatos, Gallium Arsenide and Related Compounds 1981, (Conference Series, The Institute of Physics, Bristol and London) in press.

  21. 21.

    A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine and C.J. Herman, J. Electrochem. Soc. 122, 276 (1975).

    CAS  Article  Google Scholar 

  22. 22.

    A.F. Witt, H.C. Gatos, M. Lichtensteiger and C.J. Herman, J. Electrochem. Soc. 125, 1832 (1978).

    CAS  Article  Google Scholar 

  23. 23.

    Other experiments carried out under near-zero gravity conditions have been documented in reports issued by the National Aeronautics and Space Administration, Washington, D. C.

  24. 24.

    A.F. Witt, M. Lichtensteiger and H.C. Gatos, J. Electrochem. Soc. 120, 1119 (1973).

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The author is grateful to the National Aeronautics and Space Administration for financial support.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatos, H.C. Semiconductor Crystal Growth and Segregation Problems on Earth and in Space. MRS Online Proceedings Library 9, 355–371 (1981). https://doi.org/10.1557/PROC-9-355

Download citation