Surface Tension Driven Flow in Glass Melts and Model Fluids


Experiments on surface tension driven flow in nominally cylindrical columns of a glass melt and silicone oils are described and results are presented. Predictions from an appropriate theoretical model are included. Conclusive proof has been obtained for the dominance of surface tension driven flow in these systems under the conditions of the present investigation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Scriven, L. E. and C. V. Sternling, “The Marangoni Effects,” Nature, 187, 186–188 (1960).

    Article  Google Scholar 

  2. 2.

    Levich, V. G. and V. S. Krylov, “Surface Tension Driven Phenomenon,” Ann. Rev. Fluid Mech., 1, 293–316 (1969).

    Article  Google Scholar 

  3. 3.

    Chang, C. E. and W. R. Wilcox, “Inhomogeneities Due to Thermocapillary Flow in Floating Zone Melting” J. Crystal Growth, 28 (1), 8–12 (1975).

    CAS  Article  Google Scholar 

  4. 4.

    Chang, C. E. and W. R. Wilcox, “Analysis of Surface Tension Driven Flow in Floating Zone Melting,” Int. J. Heat and Mass Transfer, 19, 355–366 (1976).

    CAS  Article  Google Scholar 

  5. 5.

    Schwabe, D., A. Scharmann, F. Preisser and R. Oeder, “Experiments on Surface Tension Driven Flow in Floating Zone Melting,” J. Crystal Growth, 43, 305–312 (1978).

    CAS  Article  Google Scholar 

  6. 6.

    Schwabe, D., and A. Scharmann, “Some Evidence for the Existence and Magnitude of a Critical Marangoni Number for the Onset of Oscillatory Flow in Crystal Growth Melts” J. Crystal Growth, 46 (1), 125–31 (1979).

    CAS  Article  Google Scholar 

  7. 7.

    Chun, C. H., “Marangoni Convection in a Floating Zone Under Reduced Gravity,” J. Crystal Growth, 48, 600–610 (1980).

    CAS  Article  Google Scholar 

  8. 8.

    Chun, C. H. and W. Wuest, “A Micro-Gravity Simulation of the Marangoni Convection,” Acta Astronautica, 5, 681–686 (1978).

    CAS  Article  Google Scholar 

  9. 9.

    Neilson, F. G. and M. C. Weinberg, “Outer Space Formation of a Laser Host Glass,” J. Non-Crystalline Solids, 22, 43–58 (1977).

    Article  Google Scholar 

  10. 10.

    Weinberg, M. C, “Glass Processing in Space,” The Glass Industry, 22–27, March (1978).

    Google Scholar 

  11. 11.

    Happe, R. A., “Implications of Zero Gravity for Producing New Glasses in Space,” J. Non-Crystalline Solids, 3, 375–385 (1970).

    CAS  Article  Google Scholar 

  12. 12.

    Wilcox, W. R., R. S. Subramanian, M. Meyyappan, H. D. Smith, D. M. Mattox, and D. P. Partlow, “A Preliminary Analysis of the Data from Experiment 77–13 and Final Report on Glass Fining Experiments in Zero Gravity,” Final Report to George C. Marshall Space Flight Center, Contract No. NAS8-33017, August 1981.

    Google Scholar 

  13. 13.

    Young, N. O., J. S. Goldstein and M. J. Block, “The Motion of Bubbles in a Vertical Temperature Gradient,” J. Fluid Mech., 6, 350–356 (1959).

    Article  Google Scholar 

  14. 14.

    Subramanian, R. S., “Slow Migration of a Gas Bubble in a Thermal Gradient,” AIChE J., 27(4) 646–654 (1981).

    CAS  Article  Google Scholar 

  15. 15.

    Hardy, S. C, “The Motion of Bubbles in a Vertical Temperature Gradient” J. Colloid Interface Sci., 69 (1), 157–162 (1979).

    CAS  Article  Google Scholar 

  16. 16.

    Wilcox, W. R., R. S. Subramanian, J. H. Papazian, H. D. Smith and D. M. Mattox, “Screening of Liquids for Thermocapillary Bubble Movement,” AIAA Journal, l7, 1022–1031 (1979).

    Article  Google Scholar 

  17. 17.

    Shankar, N., R. Cole and R. S. Subramanian, “Thermocapillary Migration of a Fluid Droplet Inside a Drop in a Space Laboratory,” Int. J. of Multiphase Flow, 1981, in press.

    Google Scholar 

  18. 18.

    Meyyappan, M., W. R. Wilcox and R. S. Subramanian, “Thermocapillary Migration of a Bubble Normal to a Plane Surface,” J. Colloid Interface Sci., 83, No. 1, 199–208 (1981).

    CAS  Article  Google Scholar 

  19. 19.

    Jayaraj, K., R. Cole, and R. S. Subramanian, “Combined Thermocapillary and Buoyant Flow in a Drop in a Space Laboratory,” J. Colloid Interface Sci., 1982, in press.

    Google Scholar 

  20. 20.

    Jebsen-Marwedel, H., “Dynaktive Flussigheitspaare: Ihr Verhalten und Praktische Bedeutung für die Glassmelze.” Glastech. Ber. 29(6), 233–238 (1956).

    CAS  Google Scholar 

  21. 21.

    Hrma, P., “Dissolution of a Solid Body Governed by Surface Free Convection,” Chem. Eng. Sci., 25, 1679–1688 (1970).

    CAS  Article  Google Scholar 

  22. 22.

    Ostrach, S., “Convection Phenomena of Importance for Materials Processing in Space,” Progress in Astronautics and Aeronautics, 52, 3–32 (1977).

    Google Scholar 

  23. 23.

    Gosman, A. D., W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfshtein, Heat and Mass Transfer in Recirculating Flows, Academic Press, London (1969). 24. McNeil, T., “Thermocapillary Flows in Glass Melts and Model Fluids,” Ph.D. thesis in Chemical Engineering in progress, Clarkson College of Technology.

    Google Scholar 

  24. 25.

    Kaiura, G. H. and J. M. Toguri, “The Viscosity and Structure of Sodium Borate Melts,” Phys. Chem. Glasses, 17(3), 62–69 (1976).

    CAS  Google Scholar 

  25. 26.

    Ede, A. J., “Advances in Free Convection,” Advances in Heat Transfer, Vol. 4, J. P. Hartnett and T. F. Irvine, Jr., ed., Academic Press, NY, 1967.

  26. 27.

    Chandrasekhar, S., “Hydrodynamic and Hydromagnetic Stability,” Oxford University Press, Oxford, 1961.

    Google Scholar 

Download references


This work was supported by the Materials Processing in Space Program Office of the National Aeronautics and Space Administration through a contract (NAS8-32944) from the Marshall Space Flight Center to Clarkson College of Technology. We are also grateful to the Dow-Corning Corporation for providing us with free samples of the DC-200 silicone oils for the experiments.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

McNeil, T.J., Cole, R. & Subramanian, R.S. Surface Tension Driven Flow in Glass Melts and Model Fluids. MRS Online Proceedings Library 9, 289–299 (1981).

Download citation