Experimental Observation of the Thermocapillary Driven Motion of Bubbles in a Molten Glass Under Low Gravity Conditions


Theory and ground based studies of bubble behavior in a fluid in the presence of a temperature gradient strongly indicate the action of a thermocapillary force which causes the bubbles to move. This ‘phenomenon been considered in the traditional treatments of glass fining. To demonstrate that the observed motion conformed to theoretical prediction it was necessary to perform the experiment under low gravity conditions. NASA’s SPAR program provided an excellent opportunity to do this.

A sodium borate melt containing a specific bubble array was subjected to a well defined temperature gradient for more than 4 minutes. The sample was contained in a platinum/ fused-silica cell which permitted photographic coverage of the experiment. Photographs were taken at one second intervals during the course of the experiment. They clearly show that the bubbles move toward the hot spot on the platinum heater strip. The observed motion is consistent with the theoretical predictions for the temperature gradients parallel and perpendicular to the heater strip.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. F. Nielson and M. C. Weinberg, J. Non-Crystalline Solids, 23, 43 (1977).

    Article  Google Scholar 

  2. 2.

    M. C. Weinberg, Glass Industry, 22 (1978).

  3. 3.

    N. J. Kriedl and G. E. Rindone, J. Non-Crystalline Solids, 38 & 39, 825 (1980).

    Article  Google Scholar 

  4. 4.

    G. E. Rindone, Glass Industry, 38, 489 (1957).

    Google Scholar 

  5. 5.

    G. E. Rindone, Glass Industry, 38, 561 (1957).

    Google Scholar 

  6. 6.

    S. R. Scholes, Modern Glass Practice (Cahness Books, Boston, Mass., 1975) pg. 216.

    Google Scholar 

  7. 7.

    C. H. Greene and R. F. Gaffney, J. Am.Cer. Soc. 42, 273 (1959).

    Article  Google Scholar 

  8. 8.

    M. Cable, A. R. Clarke, M. A. Haroon, Glass Tech. 9, 101 (1968); 10, 15 (1969).

    Google Scholar 

  9. 9.

    L. Nemec, J. Amer. Ceram. Soc., 60, (1977).

  10. 10.

    N. O. Young, J. S. Goldstein, and M. J. Block, J. Fluid Mech. 6, 350 (1959).

    Article  Google Scholar 

  11. 11.

    E. Roedder, 1965 Meeting of the Geological Society of America (from U.S. Geological Survey).

  12. 12.

    W. R. Wilcox, Ind. Eng. Chem. 61, 76 (March 1969).

    CAS  Article  Google Scholar 

  13. 13.

    T. R. Anthony and H. E. Cline, Acta. Met. 20, 247 (1972).

    CAS  Article  Google Scholar 

  14. 14.

    S. R. Coriell, S. C. Hardy and M. R. Cordes, “Melt Shape in Weightless Crystal Growth,” NBSIR 77–1208, Feb. 1977.

    Google Scholar 

  15. 15.

    H. D. Smith, D. M. Mattox, W. R. Wilcox, and R. S. Subramanian, “Glass Fining Experiments in Zero Gravity,” Final Rept. to George C. Marshall Space Flight Center, Contract No. NAS8-32351, June 30, 1977.

    Google Scholar 

  16. 16.

    S. C. Hardy, J. Colloid Interface Sci. 69, 157 (1979).

    CAS  Article  Google Scholar 

  17. 17.

    J. L. McGrew, T. L. Rehm and R. G. Griskey, Appl. Sci. Res. 29, 195 (1974).

    CAS  Article  Google Scholar 

  18. 18.

    R. L. Thompson, K. J. deWitt, and T. L. Labus, Chem. Eng. Commun. 5, 299 (1980).

    CAS  Article  Google Scholar 

  19. 19.

    R. S. Subramanian, AIChE Journ. 27, 646, (1981).

    CAS  Article  Google Scholar 

  20. 20.

    D. P. Partlow, H. D. Smith, and V. M. Mattox, Phys. Chem. Glasses, 221 (1980).

    Google Scholar 

  21. 21.

    K. Matusita, T. Watanabe, K. Kamiya, and S. Sakka, Phys. Chem. Glasses, 21, 78 (1980).

    CAS  Google Scholar 

  22. 22.

    L. Shartsis, W. Capps, and S. Spinner, Jour, of Am. Cer. Soc, 36, 319 (1953).

    CAS  Article  Google Scholar 

Download references


The support of this work by George Marshall Space Flight Center throuqh NASA Contract No. NAS8-33017 is gratefully acknowledged.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, H.D., Mattox, D.M., Wilcox, W.R. et al. Experimental Observation of the Thermocapillary Driven Motion of Bubbles in a Molten Glass Under Low Gravity Conditions. MRS Online Proceedings Library 9, 279–288 (1981). https://doi.org/10.1557/PROC-9-279

Download citation