Deformation behavior and strain rate sensitivity of nanostructured materials at moderate temperatures


Strain-rate jump tests in compression are carried out on nanostructured copper (grain size = 90 nm) at moderate temperatures (353K - 393K). Strain-rate sensitivity m is measured as a function of temperature, T, and strain rate, έ. Increasing temperature or decreasing strain rate induces an increase in the strain-rate sensitivity. For (έ, T) = (1×10-5 s-1, 393K), m is equal to 0.17 which is the highest value reported for nanocrystalline copper. These results of enhanced m are encouraging in terms of gain in ductility. The measurements emphasize the existence of a thermally activated mechanism different from the normal rate-controlling process observed for microcrystalline fcc metals.

This is a preview of subscription content, access via your institution.


  1. 1

    C.C. Koch and T.R. Malow, J. Metastable Nanocryst Mater, 2-6, 565, (1999)

    Google Scholar 

  2. 2

    H.S. Kim and Y. Estrin, Appl Phys Lett, 79, 4115, (2001)

    CAS  Article  Google Scholar 

  3. 3

    E.W. Hart, Acta Metall, 15, 351, (1967)

    CAS  Article  Google Scholar 

  4. 4

    Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J.L. Bonnentien, M.J. Hÿtch, Science, 300, (2003)

    Article  Google Scholar 

  5. 5

    C. Langlois, M.J. Hÿtch, C. Leroux, S. Guérin, P. Langlois, Y. Champion, submitted to Scr Mater

  6. 6

    Y. Champion, J. Bigot, Mater Sci Eng A 217/218, 58, (1996)

    Article  Google Scholar 

  7. 7

    C. Langlois, M.J. Hÿtch, P. Langlois, S. Lartigue-Korinek, Y. Champion, submitted to Metall. Trans.

  8. 8

    Y.M. Wang and E. Ma, Appl Phys Lett, 85, 1, (2004)

    Article  Google Scholar 

  9. 9

    Y.M. Wang and E. Ma, Appl Phys Lett, 83, 3165, (2003)

    CAS  Article  Google Scholar 

  10. 10

    Y.J. Li, X.H. Zeng, W. Blum, Acta Mater, 52, 5009, (2004)

    CAS  Article  Google Scholar 

  11. 11

    J. Pilling and N. Ridley, Superplasticity in crystalline solids, The Institute of Metals (The Camelot Press. 1989) p. 6

    Google Scholar 

  12. 12

    Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater Sci Eng A381, 71, (2004)

    CAS  Article  Google Scholar 

  13. 13

    F.H. Dalla Torre, E.V. Pereloma, C.H. Davies, Scr Mater, 51, 367, (2004)

    CAS  Article  Google Scholar 

  14. 14

    Y.M. Wang and E. Ma, Acta Mater, 52(6), 1699, (2004)

    CAS  Article  Google Scholar 

  15. 15

    S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han, Acta Mater, 53, 1521, (2005)

    CAS  Article  Google Scholar 

  16. 16

    L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater, in press, (2005)

  17. 17

    D.A. Woodford, Trans ASM, 62, 291, (1969)

    CAS  Google Scholar 

  18. 18

    Y. Champion, C. Langlois, S. Guérin, S. Lartigue-Korinek, P. Langlois and M.J. Hÿtch, Mater Sc For, 482, 71, (2005)

    CAS  Google Scholar 

  19. 19

    G. He, J. Eckert, W. Löser, L. Schultz, Nature Mater., 33, 2, (2003)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Cécilie Duhamel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duhamel, C., Guérin, S., Hÿtch, M. et al. Deformation behavior and strain rate sensitivity of nanostructured materials at moderate temperatures. MRS Online Proceedings Library 880, 83 (2005).

Download citation