Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation

Abstract

This paper reports direct growth of [001] ZnO nanorod arrays on ITO substrate from aqueous solution with electric field assisted nucleation, followed with thermal annealing. Xray diffraction analyses revealed that nanorods have wurtzite crystal structure. The diameter of ZnO nanorods was 60 ∼ 300 nm and the length was up to 2.5 μm depending on the growth condition. Photoluminescence spectra showed a broad emission band spreading from 500 to 870 nm, which suggests that ZnO nanorods have a high density of oxygen interstitials. Low and nonlinear electrical conductivity of ZnO nanorod array was observed, which was ascribed to non-ohmic contact between top electrode and ZnO nanorods and the low concentration of oxygen vacancies.

This is a preview of subscription content, access via your institution.

References

  1. 1

    N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Adv. Mater. 14, 418 (2002).

    CAS  Article  Google Scholar 

  2. 2

    M. Huang, S. Mao, H. Feick, H. Yan, T. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    CAS  Article  Google Scholar 

  3. 3

    J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park, and S. Im, Thin Solid Films 403, 533 (2002).

    Google Scholar 

  4. 4

    S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, and H. Shen, J. Cryst. Grow. 225, 110 (2001).

    CAS  Article  Google Scholar 

  5. 5

    M. H. Koch, P. Y. Timbrell, and R. N. Lamb, Semicond. Sci. Tech. 10, 1523 (1995).

    CAS  Article  Google Scholar 

  6. 6

    K. Keis, E. Magnusson, H. Lindstorm, S. E. Lindquist, and A. Hagfelt, Sol. Energ. 73, 51 (2002).

    Google Scholar 

  7. 7

    S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlatt. Microstr. 34, 3 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Y. Lin, Z. Hang, Z. Tang, F. Yuan, and J. Li, Adv. Mater. Opt. Electron. 9, 205 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 4 (2001).

    Article  Google Scholar 

  10. 10

    Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).

    CAS  Article  Google Scholar 

  11. 11

    P. M. Martin, M. S. Good, J. W. Johnston, G. J. Posakony, L. J. Bond, and S. L. Crawford, Thin Solid Films 379, 253 (2000).

    CAS  Article  Google Scholar 

  12. 12

    W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002).

    CAS  Article  Google Scholar 

  13. 13

    V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, Appl. Phys. Lett. 83, 141 (2003).

    CAS  Article  Google Scholar 

  14. 14

    B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002).

    CAS  Article  Google Scholar 

  15. 15

    L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hegfeld, J. Phys. Chem. B 105, 3350 (2001).

    CAS  Article  Google Scholar 

  16. 16

    X. Kong and Y. Li, Chem. Lett. 32, 838 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phys. Lett. 83, 144 (2003).

    CAS  Article  Google Scholar 

  19. 19

    M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, J. Appl. Phys. 94, 5240 (2003).

    CAS  Article  Google Scholar 

  20. 20

    L. Vayssieres, Adv. Mater. 15, 464 (2003).

    CAS  Article  Google Scholar 

  21. 21

    G. Z. Cao, J. J. Schermer, W. J. P. van Enckevort, W. A. L.M. Elst, and L. J. Giling, J. Appl. Phys. 79, 1357 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Y. Kajikawa, S. Noda, and H. Komiyama, Chem. Vapor Deposit. 8, 99 (2002).

    CAS  Article  Google Scholar 

  23. 23

    R. Liu, A. A. Vertegel, E. W. Bohannan, T. A. Sorenson, and J. A. Switzer, Chem. Mater. 13, 508 (2001).

    CAS  Article  Google Scholar 

  24. 24

    T. Pauporte, R. Cortes, M. Froment, B. Beaumont, and D. Lincot, Chem. Mater. 14, 4702 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Y. Han, D. Kim, J. Cho, and S. Koh, J. Vac. Sci. Tech. B, 21, 288 (2003).

    CAS  Article  Google Scholar 

  26. 26

    L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).

    CAS  Article  Google Scholar 

  27. 27

    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    CAS  Article  Google Scholar 

  28. 28

    X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).

    CAS  Article  Google Scholar 

  29. 29

    W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, Appl. Phys. Lett. 82, 4358 (2003).

    CAS  Article  Google Scholar 

  30. 30

    G. D. Mahan, J. Appl. Phys, 54, 3825 (1983).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y.J., Shang, H. & Cao, G. Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation. MRS Online Proceedings Library 879, 41 (2005). https://doi.org/10.1557/PROC-879-Z4.1

Download citation