Synthesis and Aggregation of BiBi2S3 Nanocapsules


Nanocapsules of Bi2S3 with diameters between 5 and 10 nm and shells with an amorphous atomic distribution were synthesized at room temperature, with bismuth nitrate and thiourea as precursors. Aging the solution for several days a black powder precipitated made of a mixture of one amorphous phase and crystalline Bi2S3. When two capsules interacted between each other, the capsule regions in contact crystallized into bismuth sulfide, which explains the origin of the crystalline phase observed in the X-ray diffraction pattern. At this temperature, aggregation of the small nanocapsules also gave rise to necklaces of capsules, which eventually gave rise to nanotubes; these necklaces ordered forming bundles parallel to their largest dimension. When the solution was annealed at temperatures lower than 100 °C, aggregation gave rise to capsules as large as 1 μm in diameter, and tubes with similar diameters; in this case aggregation occurred between small and large nanocapsules. Because of the monomers aggregating had an external spherical symmetry and the low annealing temperatures, which were not high enough to produce sintering, all capsules and tubes formed during aggregation had porous walls, making these materials interesting for many applications.

This is a preview of subscription content, access via your institution.


  1. 1

    C. D. Lokhande, B. R. Sankapal, R. S. Mane, H. M. Pathan, M. Muller, M. Giersig, H. Tributsch, and V. Ganeshan, Appl. Surf. Sci. 187, 108 (2002).

    CAS  Article  Google Scholar 

  2. 2

    P. M. Sirimanne, K. Takahashi, and N. Sonoyama, T. Sakata, Solar Energy Mater. & Solar Cells 73, 175 (2002).

    CAS  Article  Google Scholar 

  3. 3

    L. M. Peter, K. G. U. Wijayantha, D. J. Riley, and J. P. Waggett, J. Phys. Chem. B107, 8378 (2003).

    Article  Google Scholar 

  4. 4

    S. H. Pawar, P. N. Bhosale, M. D. Uplane, and S. Tanhankar, Thin Solid Films 110, 165 (1983).

    CAS  Article  Google Scholar 

  5. 5

    B. B. Nayak, H. N. Acharya, G. B. Mitra, and B. K. Mathur, Thin Solid Films 105, 17 (1983).

    CAS  Article  Google Scholar 

  6. 6

    M. E. Rincón, H. Hu, G. Martínez, R. Suárez, and J. G. Bañuelos, Solar Energy Mater. & Solar Cells 77, 239 (2003).

    Article  Google Scholar 

  7. 7

    P. Boudjouk, M. P. Remington Jr., D. J. Grier, D. R. Jarabek, and G. J. McCarthy, Inorg. Chem. 37, 3538 (1998).

    CAS  Article  Google Scholar 

  8. 8

    R. Suarez, P. K. Nair, and P. V. Kamat, Langmuir 14, 3236 (1988).

    CAS  Article  Google Scholar 

  9. 9

    R. Larson, V. A. Greania, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Phys. Rev. B65, 085108 (2002).

    Article  Google Scholar 

  10. 10

    L. M. Peter, J. Electroanal. Chem. 98, 49 (1979).

    CAS  Article  Google Scholar 

  11. 11

    D. J. Riley, J. P. Waggett, and K. G. U. Wijayantha, J. Materials Chem. 14, 704 (2004).

    CAS  Article  Google Scholar 

  12. 12

    B. O’Reagan, and M. Gratzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  13. 13

    D. Arivuoli, F. D. Gnanam, and P. Ramasamy, J. Mater. Science Lett. 7, 711 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Y. Chen, H. Kou, J. Jiang, and Y. Su, Mater. Chem. and Phys. 82, 1 (2003).

    CAS  Article  Google Scholar 

  15. 15

    S. Zhou, J. Li, W. Ke, and S. Lu, Matter Lett. 57, 2602 (2003).

    CAS  Article  Google Scholar 

  16. 16

    B. F. Variano, D. M. Hwang, C. J. Sandroff, P. Wiltzius, T. W. Jing, and N. P. Ong, J. Phys. Chem. 91, 6455 (1987).

    CAS  Article  Google Scholar 

  17. 17

    M. W. Shao, M. S. Mo, Y. Cui, G. Chen, and Y. T. Qian, J. Crystal Growth 233, 799 (2001).

    CAS  Article  Google Scholar 

  18. 18

    H. Zhang, Y. Ji, X. Ma, J. Xu, and D. Yang, Nanotechnology 14, 974 (2003).

    CAS  Article  Google Scholar 

  19. 19

    W. Hofmann, Z. Kristall. 86, 225 (1933).

    CAS  Google Scholar 

  20. 20

    Q. Li, M. Shao, J. Wu, G. Yu, and Y. Qian, Inorg. Chem. Comm. 5, 933 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Z. Zhang, T. J. Pinnavaia, J. Amer. Chem. Soc. 124, 12294 (2002).

    CAS  Article  Google Scholar 

  22. 22

    M. C. Neves, L. M. Liz-Marzan, and T. Trindade, J. Colloid Interface Sci. 264, 391 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vega-González, M., Bokhimi, X., Aguilar-Franco, M. et al. Synthesis and Aggregation of BiBi2S3 Nanocapsules. MRS Online Proceedings Library 879, 336 (2005).

Download citation