Solvothermal Pathways to Transition Metal Oxides

Abstract

A straightforward solvothermal pathway towards anisotropic nanoscale molybdenum, vanadium and tungsten oxides has been established. They are formed quantitatively from one-step procedures within a few days or hours of autoclave treatment in the temperature range between 100 and 220 °C. The addition of straightforward ionic additives (e.g. alkali halides) leads to a versatile interplay between the formation of novel polymolybdates(VI) and the production of oxidic nanoparticles. Key solvothermal features (role of the precursor, solvothermal parameter window, influence of ionic additives) of the individual transition metal oxides are investigated with respect to the development of general synthetic guidelines and predictive concepts.

This is a preview of subscription content, access via your institution.

References

  1. 1

    K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (Noyes, Park Ridge, N. J., 2001).

    Google Scholar 

  2. 2

    R. I. Walton, Chem. Soc. Rev. 31, 230 (2002).

    CAS  Article  Google Scholar 

  3. 3

    S. Komarneni, H. Katsuki, Pure Appl. Chem. 74, 1537 (2002).

    CAS  Article  Google Scholar 

  4. 4

    G. Demazeau, Compt. Rend. Acad. Sci., Sér. II, 2, 685 (1999).

    CAS  Google Scholar 

  5. 5

    G. Demazeau, J. Mater. Chem. 9, 15 (1999).

    CAS  Article  Google Scholar 

  6. 6

    M. S. Whittingham, J.-D. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ionics 75, 257 (1995).

    CAS  Article  Google Scholar 

  7. 7

    A. K. Cheetham, C. F. Mellot, Chem. Mater. 9, 2269 (1997).

    CAS  Article  Google Scholar 

  8. 8

    C. Serre, C. Lorentz, F. Taulelle, G. Férey, Chem. Mater. 15, 2328 (2003).

    CAS  Article  Google Scholar 

  9. 9

    S. Komarneni, Curr. Sci. 85, 1730 (2003).

    CAS  Google Scholar 

  10. 10

    C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003).

    CAS  Article  Google Scholar 

  11. 11

    G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002).

    CAS  Article  Google Scholar 

  12. 12

    C. N. R. Rao, B. Raveau, Transition Metal Oxides (VCH Publishers, New York, 1995).

    Google Scholar 

  13. 13

    A. Baiker, D. Gasser, Z. Phys. Chem. 41, 119 (1986).

    Article  Google Scholar 

  14. 14

    K. Galatsis, Y. X. Li, W. Wlordarski, E. Comini, G. Sberveglieri, C. Catalini, S. Santucci, M. Passacantando, Sens. Actuators B 83, 276 (2002).

    Article  Google Scholar 

  15. 15

    J. V. Dobson, J. Coiner, J. Electroanal. Chem. 220, 225 (1987).

    CAS  Article  Google Scholar 

  16. 16

    A. Michailovski, J.-D. Grunwaldt, A. Baiker, R. Kiebach, W. Bensch, G. R. Patzke, Angew. Chem., submitted.

  17. 17

    R. I. Walton, T. Loiseau, D. O’Hare, G. Férey, Chem. Mater. 11, 3201 (1999).

    CAS  Article  Google Scholar 

  18. 18

    L. Engelke, M. Schaefer, F. Porsch, W. Bensch, Eur. J. Inorg. Chem. 506 (2003).

    Google Scholar 

  19. 19

    A. Michailovski, F. Krumeich, G. R. Patzke, Helv. Chim. Acta 87, 1029 (2004).

    CAS  Article  Google Scholar 

  20. 20

    H.-F. Liu, R.-S. Liu, K. Y. Liew, R. E. Johnson, J. H. Lunsford, J. Am. Chem. Soc. 106, 4117 (1984).

    CAS  Article  Google Scholar 

  21. 21

    J. Zhou, N.-S. Xu, S.-Z. Deng, J. Chen, J.-C. She, Z.-L. Wang, Adv. Mater. 15, 1835 (2003).

    CAS  Article  Google Scholar 

  22. 22

    M. Niederberger, F. Krumeich, H.-J. Muhr, M. Müller, R. Nesper, J. Mater. Chem. 11, 1941 (2001).

    CAS  Article  Google Scholar 

  23. 23

    X. W. Lou, H. C. Zeng, Chem. Mater. 14, 4781 (2002).

    CAS  Article  Google Scholar 

  24. 24

    G. R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.-D. Grunwaldt, A. Baiker, Chem. Mater. 16, 1126 (2004).

    CAS  Article  Google Scholar 

  25. 25

    B. Krebs, Acta Cryst. B28, 2222 (1972).

    Article  Google Scholar 

  26. 26

    J. R. Günter, J. Solid State Chem. 5, 354 (1972).

    Article  Google Scholar 

  27. 27

    J.-D. Grunwaldt, M. Ramin, M. Rohr, A. Michailovski, G. R. Patzke, A. Baiker, Rev. Sci. Instr., submitted.

  28. 28

    S. Mann, Biomineralization, Oxford University Press (Oxford, New York, 2001).

    Google Scholar 

  29. 29

    Y. Q. Zhu, W. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, Chem. Phys. Lett. 309, 327 (1999).

    CAS  Article  Google Scholar 

  30. 30

    A. Patra, K. Auddy, D. Ganguli, J. Livage, P. K. Biswas, Mater. Lett. 58, 1059 (2004).

    CAS  Article  Google Scholar 

  31. 31

    M. A. Wechter, H. R. Shanks, G. Carter, G. M. Ebert, R. Guglielmo, A. F. Voigt, Anal. Chem. 44, 850 (1972).

    CAS  Article  Google Scholar 

  32. 32

    Yu. Koltypin, S. I. Nikitenko, A. Gedanken, J. Mater. Chem. 12, 1107 (2002).

    CAS  Article  Google Scholar 

  33. 33

    M. Niederberger, M. H. Bartl, G. D. Stucky, J. Am. Chem. Soc. 124, 13642 (2002).

    CAS  Article  Google Scholar 

  34. 34

    X.-L. Li, J.-F. Liu, Y.-D. Li, Inorg. Chem. 42, 921 (2003).

    CAS  Article  Google Scholar 

  35. 35

    L. G. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne, J. Solid State Chem. 162, 300 (2001).

    CAS  Article  Google Scholar 

  36. 36

    K. P. Reis, A. Ramanan, M. S. Whittingham, J. Solid State Chem. 91, 394 (1991).

    CAS  Article  Google Scholar 

  37. 37

    K. P. Reis, A. Ramanan, M. S. Whittingham, J. Solid State Chem. 96, 31 (1992).

    CAS  Article  Google Scholar 

  38. 38

    P. G. Dickens, A. C. Halliwell, D. J. Murphy, M. S. Whittingham, Trans. Faraday Soc. 67, 794 (1971).

    CAS  Article  Google Scholar 

  39. 39

    A. Michailovski, F. Krumeich, G. R. Patzke, Mater. Res. Bull. 39, 887 (2004).

    CAS  Article  Google Scholar 

  40. 40

    A. Michailovski, F. Krumeich, G. R. Patzke, Chem. Mater. 16, 1433 (2004).

    CAS  Article  Google Scholar 

  41. 41

    J. Oi, A. Kishimoto, T. Kudo, J. Solid State Chem. 103, 176 (1993).

    CAS  Article  Google Scholar 

  42. 42

    G. G. Janauer, A. Dobley, J. Guo, P. Zavalij, M. S. Whittingham, Chem. Mater. 8, 2096 (1996).

    CAS  Article  Google Scholar 

  43. 43

    F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, J. Am. Chem. Soc. 121, 8324 (1999).

    CAS  Article  Google Scholar 

  44. 44

    A. Coucou, A. Driouiche, M. Figlarz, M. Touboul, G. Chévrier, J. Solid State Chem. 32, 283 (1992).

    Article  Google Scholar 

  45. 45

    P. Y. Zavalij, M. S. Whittingham, Acta Cryst. B55, 627 (1999).

    CAS  Article  Google Scholar 

  46. 46

    S. Knobl, G. A. Zenkovets, G. N. Kryukova, O. Ovsitser, D. Niemeyer, R. Schlögl, G. Mestl, J. Catal. 215, 177 (2003).

    CAS  Article  Google Scholar 

  47. 47

    H.-Y. Xu, H. Wang, Z. Q. Song, Y. W. Wang, H. Yan, M. Yoshimura, Electrochim. Acta 49, 349 (2004).

    CAS  Article  Google Scholar 

  48. 48

    M. Morcrette, P. Rozier, L. Dupont, E. Muynier, L. Sannier, J. Galy, J.-M. Tarascon, Nature Mater. 2, 766 (2003).

    Article  CAS  Google Scholar 

  49. 49

    N. Stenou, L. Bouhedja, S. Castro-Garcia, J. Livage, High Pressure Res. 20, 55 (2001).

    Article  Google Scholar 

  50. 50

    F. Sedini, N. Etteyeb, N. Stenonou, C. Guyard-Duhayon, J. Maquet, N. Gharbi, J. Livage, J. Solid State Chem. 167, 407 (2002).

    Article  Google Scholar 

  51. 51

    S. Ayyappan, N. Subbanna, C. N. R. Rao, Chem. Eur. J. 1, 165 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michailovski, A., Patzke, G.R. Solvothermal Pathways to Transition Metal Oxides. MRS Online Proceedings Library 878, 12 (2005). https://doi.org/10.1557/PROC-878-Y1.2

Download citation