Abstract
We present a selection of x-ray diffraction patterns of spherical (He, Ar), dumbbell- (N2, CO), and chain-like molecules (n-C9H20, n-C19H40) solidified in nanopores of silica glass (mean pore diameter 7nm). These patterns allow us to demonstrate how key principles governing crystallization have to be adapted in order to accomplish solidification in restricted geometries. 4He, Ar, and the spherical close packed phases of CO and N2 adjust to the pore geometry by introducing a sizeable amount of stacking faults. For the pore solidified, medium-length chainlike n-C19H40 we observe a close packed structure without lamellar ordering, whereas for the short-chain C9H20 the layering principle survives, albeit in a modified fashion compared to the bulk phase.
This is a preview of subscription content, access via your institution.
References
- 1
M. J. Buerger, Elementary crystallography, J. Wiley and Sons, NY (1963).
- 2
Rare Gas Solids, M. L. Klein, J. A. Venables eds., Academic Press, London (1977); N. G. Parsonage and L.A.K. Staveley, Disorder in Crystals, Clarendon, Oxford (1978).
- 3
P. Huber and K. Knorr, Phys. Rev. B 60, 12657 (1999).
- 4
J. Baumert, B. Asmussen, C. Gutt, R. Kahn, J. Chem. Phys. 116, 10869 (2002).
- 5
P. Levitz, G. Ehret, S. K. Sinha, J. M. Drake, J. Chem. Phys. 95, 8 (1991).
- 6
D. Wallacher, M. Rheinstaedter, T. Hansen, K. Knorr, J. Low Temp. Phys., in press.
- 7
P. Huber, D. Wallacher, K. Knorr, Phys. Rev. B 60, 12666 (1999).
- 8
T. Hofmann, D. Wallacher, P. Huber, K. Knorr, J. Low Temp. Phys., in press.
- 9
P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhys. Lett. 65, 351 (2004).
- 10
S. Kumar, “Liquid Crystals”, Cambridge University Press, Cambridge (2001).
- 11
D.L. Dorset, J. Phys. D 32, 1276 (1999).
- 12
D. Zhao et al., Science 279, 548 (1998); Kresge C.T. et al. Nature 359, 710 (1992).
- 13
K. Morishige and K. Kawano, J. Phys. Chem. B 104, 2894 (2000). K. Morishige and Y. Ogisu, J.Chem. Phys. 114, 7166 (2001); K. Morishige and H. Uematsu, J. Chem. Phys. 122, 044711 (2005).
- 14
H. K. Christenson, J. Phys. Cond. Matt. 13, R95 (2001); D. Wallacher, K. Knorr, Phys. Rev. B 63, 104202 (2001); V. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, A.V. Kityk, Phys. Rev. B 67, 144105 (2003); D. Wallacher, N. Kunzner, D. Kovalev, N. Knorr, K. Knorr, Phys. Rev. Lett. 92, 195704 (2004).
- 15
D.E. Silva et al., Phys. Rev. Lett. 88, 155701 (2002), D.W. Brown et. al., Phys. Rev. Lett. 81, 1019 (1998); M. Schindler et. al., Phys. Rev. B 53, 11451 (1996).
- 16
M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvilli, Nature 430, 525 (2004); K. Murata et al. Nature 407, 599 (2000); N. E. Chayen, Current Opinions in Structural Biology 14, 577 (2004).
- 17
N.E. Chayen, E. Saridakis, R. El-Bahar, Y. Nemirovsky, J. Mol. Biology, 312, 591 (2001); L. Rong, H. Komatsu, I. Yoshizaki, A. Kadowaki and S. Yoda, J. Synchr. Radiation News 11, 27 (2004).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huber, P., Knorr, K. Solidified Fillings of Nanopores. MRS Online Proceedings Library 876, 31 (2005). https://doi.org/10.1557/PROC-876-R3.1
Published: