Oligonucleotide Metallization for Conductive Bio-Inorganic Interfaces in Self Assembled Nanoelectronics and Nanosystems


Properly designed sequences of oligonucleotides can be employed as scaffolds or templates for the self-organization of nanostructures and devices, through the Watson-Crick base pairing mechanism which serves as a programmable smart glue. In this paper, we report the Platinum metallization of peptide nucleic acid (PNA) sequences for the first time. PNA is an analogue of DNA and has a neutral backbone which provides stronger hybridization, greater stability and higher specificity in base pairing. Pt ions were reduced from a salt solution and localized over the PNA fragments where the size of the Pt colloids depends on the duration of chemical reduction. Computations of the high lying occupied and lowlying unoccupied orbitals indicated that Pt nanoparticles bind easily on both the Thymine (T) bases and the backbone in the PNA.

This is a preview of subscription content, access via your institution.


  1. [1]

    Niemeyer, C. M. et al. Angew. Chem. Int. Ed, 40, 4128–4158 (2001).

    CAS  Article  Google Scholar 

  2. [2]

    Egholm, M., Buchardt, O. et al. Nature, 365, 566–568 (1993).

  3. [3]

    Egholm, M., Nielsen, P. E., Buchardt, O., and Berg, R. H. J. Am.Chem. Soc., 114, 9677–9678(1992).

  4. [4]

    M. R. Arkin, Science 273, 475(1996).

    CAS  Article  Google Scholar 

  5. [5]

    Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J. Am. Chem.Soc., 120, (6165 ~1998).

  6. [6]

    J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Proc.Natl. Acad. Sci. U.S.A. 95, 12759 (1998).

    CAS  Article  Google Scholar 

  7. [7]

    E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 120, 12950 (1998).

    CAS  Article  Google Scholar 

  8. [8]

    P. J. de Pablo. et al, Phys. Rev. Lett., 85, 4992 (2000).

    Article  Google Scholar 

  9. [9]

    P. T. Henderson, D. Jones, G. Hampikian, Y. Kann, and B. G. Shuster, Proc. Natl. Acad. Sci. U.S.A. 96, 8353 (1999).

    CAS  Article  Google Scholar 

  10. [10]

    D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature, 403, 635 (2000).

    CAS  Article  Google Scholar 

  11. [11]

    Erez Braun, Yoav Eichen, Uri Sivan, Gdalyahu Ben-Yoseph, Nature, 391, 775–778 (1998).

  12. [12]

    Jan Richter, Michael Mertig, and Wolfgang Pompe. Applied Physics Letters, 78, 536–538 (2001).

  13. [13]

    Becke, A. D., J. Chem. Phys., 98, 5648 (1993).

    CAS  Article  Google Scholar 

  14. [14]

    Hay, P.J. and Wadt, W.R., J.Chem. Phys., 82, 270(1985).

    CAS  Article  Google Scholar 

  15. [15]

    Wadt, W. R. and Hay, P. J., J. Chem. Phys., 82, 284 (1985).

    CAS  Article  Google Scholar 

  16. [16]

    Hay, P.J. and Wadt, W.R., J.Chem. Phys., 82, 299(1985).

    CAS  Article  Google Scholar 

  17. [17]

    M.J. Frisch et al., Gaussian 03, Revision B.03 (Gaussian Inc., Pittsburgh, 2003).

  18. [18]

    Keren, K., Berman, R. S., and Braun, E., Nano Lett., 4, 323 (2004).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xu Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Singh, K., Tsai, C. et al. Oligonucleotide Metallization for Conductive Bio-Inorganic Interfaces in Self Assembled Nanoelectronics and Nanosystems. MRS Online Proceedings Library 872, 102 (2005). https://doi.org/10.1557/PROC-872-J10.2

Download citation