Skip to main content
Log in

Enhanced Mobility of Organic Field-Effect Transistors with Epitaxially Grown C60 Film by in-situ Heat Treatment of the Organic Dielectric

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electron mobilities were studied as a function of thin-film growth conditions in hot wall epitaxially grown C60 based field-effect transistors. Mobilities in the range of ∼ 0.5 to 6 cm2/Vs are obtained depending on the thin-film morphology arising from the initial growth conditions. Moreover, the field-effect transistor current is determined by the morphology of the film at the interface with the dielectric, while the upper layers are less relevant to the transport. At high electric fields, a non-linear transport has been observed. This effect is assigned to be either because of the dominance of the contact resistance over the channel resistance or because of the gradual move of the Fermi level towards the band edge as more and more empty traps are filled due to charge injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, Brian Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl. Acad. Sci. 98, 4835 (2001).

    Article  CAS  Google Scholar 

  2. H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen and D. M. de Leeuw, Nature 414, 599 (2001).

    Article  CAS  Google Scholar 

  3. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West, Appl. Phys. Lett. 80, 1088 (2002).

    Article  CAS  Google Scholar 

  4. A. R. Brown, C. P. Jarret, D. M. de Leeuw, M. Matters, Synth. Met. 88, 37 (1997).

    Article  CAS  Google Scholar 

  5. B. K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H. E. Katz, and Z. Bao, J. Appl. Phys. 91, 10140 (2001).

    Article  Google Scholar 

  6. D. M. De Leew, G. H. Gelinck, T. C. T. Geuns, E. Van Veenendaal, E. Cantatore and B. H. Huisman, Int. Electron Device Meeting (IEDM) Tech. Dig. 293 (2002).

  7. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).

    Article  CAS  Google Scholar 

  8. H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, and Ch. Dehm, Appl. Phys. Lett. 82, 4175 (2003).

    Article  CAS  Google Scholar 

  9. K. S. Narayan and N. Kumar, Appl. Phys. Lett, 79, 1891 (2001).

    Article  CAS  Google Scholar 

  10. R. Schroeder, L. A. Majewski and M. Grell, Adv. Mater. 16, 633 (2004); Th. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer and S. Bauer, Appl. Phys. Lett. 85, 5409 (2004).

    Article  CAS  Google Scholar 

  11. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson and J. A. Rogers, Science 303, 1644 (2004).

    Article  CAS  Google Scholar 

  12. Y. -Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, IEEE Electron Devices Lett. 18, 606 (1997).

    Article  CAS  Google Scholar 

  13. R. G. Kepler, Phys. Rev. 119, 1226 (1960).

    Article  CAS  Google Scholar 

  14. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, Appl. Phys. Lett. 82, 4581 (2003).

    Article  CAS  Google Scholar 

  15. Th. B. Singh, N. Marjanović, P. Stadler, M. Auinger, G. J. Matt, S. Günes, N. S. Sariciftci, R. Schwödiauer and S. Bauer, J. Appl. Phys. (in press)

  16. Z. Bao, A. J. Lovinger and J. Brown, J. Am. Chem. Soc. 120, 207 (1998).

    Article  CAS  Google Scholar 

  17. H. E. Katz, J. Johnson, A. J. Lovinger and W. Li, J. Am. Chem. Soc. 122, 7787 (2000).

    Article  CAS  Google Scholar 

  18. R. J. Chesterfield, J. C. McKeen, Ch. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann and L. L. Miller, J. Appl. Phys. 95, 6396 (2004).

    Article  CAS  Google Scholar 

  19. P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar and T. O. Graham, Appl. Phys. Lett. 80, 2517 (2002).

    Article  CAS  Google Scholar 

  20. G. Horowitz, Ph. Lang, M. Mottaghi, and H. Aubin, Adv. Funct. Mater. 14, 1069 (2004).

    Article  CAS  Google Scholar 

  21. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini and D. M. de Leeuw, Phys. Rev. Lett. 92, 116802 (2004).

    Article  Google Scholar 

  22. R. Schwödiauer, G. S. Neugschwandtner, S. Bauer-Gogonea, S. Bauer and W. Wirges, Appl. Phys. Lett. 75, 3998 (1999).

    Article  Google Scholar 

  23. www.dow.com/cyclotene/

  24. A. Andreev, G. Matt, C. J. Brabec, H. Sitter, D. Badt, H. Seyringer and N. S. Sariciftci Adv. Mat. 12, 629 (2000).

    Article  CAS  Google Scholar 

  25. D. Stifter and H. Sitter, Appl. Phys. Lett. 66, 679 (1995).

    Article  CAS  Google Scholar 

  26. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  27. G. Horowitz and P. Delannoy, J. Appl. Phys. 70, 469 (1991).

    Article  CAS  Google Scholar 

  28. M. Koehler and I. Biaggio, Phys. Rev. B., 70, 045314 (2004).

    Article  Google Scholar 

  29. V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees and M. M. Wienk, Adv. Func. Mater. 13, 43 (2003);

    Article  CAS  Google Scholar 

  30. G. J. Matt, N. S. Sariciftci and T. Fromherz, Appl. Phys. Lett. 84, 1570 (2004).

    Article  CAS  Google Scholar 

  31. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).

    Article  CAS  Google Scholar 

  32. G. Horowitz, private communications.

  33. E. J. Meijer, G. H. Gelinck, E. Van Veenendaal, B. H. Huisman, D. M. De Leeuw, T. M. Klapwijk, Appl. Phys. Lett., 82, 4576 (2003).

    Article  CAS  Google Scholar 

  34. A. Rose, Phys. Rev. 97, 1538 (1955).

    Article  CAS  Google Scholar 

  35. M. A. Lampart, Phys. Rev. 103, 1648 (1956).

    Article  Google Scholar 

  36. W. Kalb, Ph. Lang, M. Mottaghi, H. Aubin, G. Horowitz and M. Wutting, Synth. Met., 146, 279 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. B. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T.B., Marjanovic, N., Matt, G.J. et al. Enhanced Mobility of Organic Field-Effect Transistors with Epitaxially Grown C60 Film by in-situ Heat Treatment of the Organic Dielectric. MRS Online Proceedings Library 871, 49 (2005). https://doi.org/10.1557/PROC-871-I4.9

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-871-I4.9

Navigation