Effect of Current Direction on the Reliability of Different Capped Cu Interconnects


The reliability of Cu M1-V1-M2-V2-M3 interconnects with SiN and CoWP cap layers was investigated. Similar to previously reported results, the reliability of CoWP capped structures is much better than identical SiN capped structures. However, it was also observed that the reliability of CoWP capped interconnects was independent of the direction of electrical current flow. This phenomenon is different from what was observed for SiN capped structures, where M2 lines with electron current flow in the upstream configuration (“via-below”) have about three times larger median-time-to-failure than identical lines in the downstream configuration (“viaabove”). This is because the Cu/SiN interface is the preferential void nucleation site and provides the fastest diffusion pathway in such an architecture. Failure analysis has shown that fatal partially-spanned voids usually had formed directly below the via for “via-above” configuration, and fully-spanned voids occurred in the lines above the vias for “via-below” configuration.

On the other hand, failure analysis for CoWP-coated Cu structures showed that partiallyspanned voids below the via do not cause fatal failures in the downstream configuration. This is because the CoWP layer is conducting, and thus able to shunt current around the void. As a result, a large fully-spanning void is required to cause a failure, just like the upstream configuration. Thus the lifetime of an interconnect with a conducting cap layer is independent of whether the current is flowing upstream or downstream.

This is a preview of subscription content, access via your institution.


  1. [1]

    C.-K. Hu and J.H.E. Harper, Mater. Chem. and Phys., 52, 5 (1998).

    CAS  Article  Google Scholar 

  2. [2]

    J.R. Lloyd and J.J. Clement, Thin Solid Films, 262, 135 (1995).

    CAS  Article  Google Scholar 

  3. [3]

    C.-K. Hu, R. Rosenberg and K. Y. Lee, Appl. Phys. Lett. 74, 2945 (1999).

    CAS  Article  Google Scholar 

  4. [4]

    L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil and I. Touet, Microelectron. Reliab. 40, 77 (2000).

    Article  Google Scholar 

  5. [5]

    N. D. McCusker, H. S. Gamble and B. M. Armstrong, Microelectron. Reliab. 40, 69 (2000).

    Article  Google Scholar 

  6. [6]

    C.-K. Hu, R. Rosenberg, H. S. Rathore, D. B. Nguyen, and B. Agarwala, IITC Proc., p. 267 (1999).

  7. [7]

    M. W. Lane, E. G. Liniger and J. R. Lloyd, J. Appl. Phys., 93, 1417 (2003).

    CAS  Article  Google Scholar 

  8. [8]

    C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A. Stamper, Appl. Phys. Lett. 81, 1782 (2002).

    CAS  Article  Google Scholar 

  9. [9]

    C.-K. Hu, L. Gignac, E. Liniger, B. Herbst, D. L. Rath, S. T. Chen, S. Kaldor, A. Simon and W. –T. Tseng, Appl. Phys. Lett. 83, 869 (2003).

    CAS  Article  Google Scholar 

  10. [10]

    C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Stamper, A. Domenicucci and X. Chen, Microelectron. Eng. 70, 406 (2003).

    CAS  Article  Google Scholar 

  11. [11]

    C.-K. Hu, L. Gignac, S. G. Malhotra, R. Rosenberg, and S. Boettcher, Appl. Phys. Lett. 78, 904 (2001).

    CAS  Article  Google Scholar 

  12. [12]

    C. L. Gan, C.V. Thompson, K.L. Pey, W.K. Choi, H.L. Tay, B. Yu and M.K. Radhakrishnan, Appl. Phys. Lett., 79, 4592 (2001).

    CAS  Article  Google Scholar 

  13. [13]

    D. Radhi and G. Dixit, J. Appl. Phys., 94, 6463 (2003).

    Article  Google Scholar 

  14. [14]

    A. K. Stamper, C. Adams, X. Chen, C. Christiansen, E. Cooney, W. Cote, J. Gambino, J. Gill, S. Luce, T. McDevitt, B. Porth, T. Spooner, A. Winslow, and R. Wistrom, AMC Proc., p. 485 (2002).

Download references

Author information



Corresponding author

Correspondence to C. L. Gan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gan, C.L., Lee, C.Y., Cheng, C.K. et al. Effect of Current Direction on the Reliability of Different Capped Cu Interconnects. MRS Online Proceedings Library 863, B9.3 (2004). https://doi.org/10.1557/PROC-863-B9.3

Download citation