Effect of Dielectric Pore Size Distribution on Interfacial Adhesion of the Tantalum-Porous Dielectric Interface

Abstract

In this work we report the adhesion of a thin Tantalum (Ta) barrier films deposited on nanoporous dielectric substrates (Xerogel and Methyl Silesquioxanes (MSQ)). The high compressive stresses in the Ta barrier layer lead to spontaneous delamination from the underlying substrate resulting in a telephone cord like morphology, which allows the measurement of critical interfacial adhesion (fracture) energy. The fracture energy of Ta barrier films on different porous substrates is evaluated using the above two methods and the resulting differences are explained. Fracture energy varies inversely as a power law with the dielectric pore size indicating pores are essential to delamination in the barrier-dielectric interface. The observed trend of fracture energy is related to other mechanical properties of the porous substrate offering insights into the underlying mechanisms governing fracture of films deposited on porous substrates.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. –A. Nicolet, Thin Solid Films, 52 (1978) 415

    CAS  Article  Google Scholar 

  2. 2

    E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M.-A. Nicolet, J. Appl. Phys., 70 (1991) 1369.

    CAS  Article  Google Scholar 

  3. 3

    K. Holloway and P. Fryer, Appl. Phys. Lett., 57 (1990) 1736.

    CAS  Article  Google Scholar 

  4. 4

    Q. Ma, J. Mater. Res., 12(3) (1997) 840.

    CAS  Article  Google Scholar 

  5. 5

    N. R. Moody, R. Q. Hwang, S. Venka-taraman, J. E. Angelo, D. P. Norwood and W. W. Gerberich, Acta mater., 46(2) (1998) 585.

    CAS  Article  Google Scholar 

  6. 6

    G. Xu, M. -Y. He and D. R. Clarke, Acta Mater., 47(15) (1999) 4131.

    CAS  Article  Google Scholar 

  7. 7

    M. Lane and R. H. Dauskardt, J. Mater. Res., 15 (1) (2000) 203.

    CAS  Article  Google Scholar 

  8. 8

    M. Lane, R. H. Dauskardt, A. Vainchtein and H. Gao, J. Mater. Res., 15(12) (2000) 2758.

    CAS  Article  Google Scholar 

  9. 9

    J. A. Lee, J. T. Wetzel, C. Merrill and P. S. Ho, Proc. Mat. Res. Soc., 716 (2002) B12.12.1.

    Article  Google Scholar 

  10. 10

    G. Kloster, T. Scherban, G. Xu, J. Blaine, B. Sun and Y. Zhou, 2002 IEEE Int. Interconnect Tech. Conf. Proc., (2002) 242.

  11. 11

    G. Xu, J. He, E. Andideh, J. Bielefeld and T. Scherban, 2002 IEEE Int. Interconnect Tech. Conf. Proc., (2002) 57.

  12. 12

    J. B. Vella, I. S. Adhihetty, K. Junker and A. A. Volinsky, Int. J. Frac., 119/120 (2003) 487.

    CAS  Article  Google Scholar 

  13. 13

    J. L. Plawsky, A. Jain, S. Rogojevic and W. N. Gill, Interlayer Dielectrics for Semiconductor Technologies, S. Murarka, Eisenberg, Sinha (Editors), Elsevier Inc. (2003).

  14. 14

    K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys., 93(11) (2003) 8793.

    CAS  Article  Google Scholar 

  15. 15

    J. W. Hutchinson and Z. Suo, Adv. Appl. Mech., 29 (1991) 63.

    Article  Google Scholar 

  16. 16

    M. D. Thouless, IBM J. Res. Devlop., 38(4) (1994) 367.

    Article  Google Scholar 

  17. 17

    A. A. Volinsky, N. R. Moody and W. W. Gerberich, Acta Mater., 50 (2002) 441.

    CAS  Article  Google Scholar 

  18. 18

    M. Lane, Annu. Rev. Mater. Res., 33 (2003) 29.

    CAS  Article  Google Scholar 

  19. 19

    A. Jain , S. Rogojevic, S. Ponoth , N. Agarwal , I. Matthew , W.N. Gill , P. Persans , M. Tomozawa , J.L. Plawsky, E. Simonyi, Thin Solid Films, 398 –399 (2001) 513.

    CAS  Article  Google Scholar 

  20. 20

    M. R. Baklanov and K. P. Mogilnikov, Microelectronic Engineering, 64 (2002) 335.

    CAS  Article  Google Scholar 

  21. 21

    R. Saxena, O. Rodriguez, W. Cho, K. P. Mogilnikov, M. R. Baklanov, W. N. Gill and J. L. Plawsky, J. Non-Crystalline Solids, 349 (2004) 189.

    CAS  Article  Google Scholar 

  22. 22

    M. Lane, R. H. Dauskardt, A. Vainchtein and H. Gao, J. Mater. Res., 15(12) (2000) 2758.

    CAS  Article  Google Scholar 

  23. 23

    R. Saxena, W. Cho, O. Rodriguez, W. N. Gill and J. L. Plawsky, Proc. Mater. Res. Soc., F3.12 (2004)

  24. 24

    A. G. Evans and J. W. Hutchinson, Int. J. Solids Structures, 20(5) (1984) 455.

    Article  Google Scholar 

  25. 25

    P. G. Charalambides, J. Lund, A. G. Evans, R. M. McMeeking, J. Appl. Mech., 56 (1989) 77.

    Article  Google Scholar 

  26. 26

    G. Gioia and M. Ortiz, Adv. Appl. Mech., 33 (1997) 119.

    Article  Google Scholar 

  27. 27

    A. Lee, C. S. Litteken, R. H. Dauskardt and W. D. Nix, Acta Materialia, 53 (2005) 609.

    CAS  Article  Google Scholar 

  28. 28

    A. Jain, S. Rogojevic, W.N. Gill, J. L. Plawsky, I. Matthew, M. Tomozawa and E. Simonyl, J. Appl. Phys., 90(11) (2001) 5832.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Saxena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saxena, R., Cho, W., Rodriguez, O. et al. Effect of Dielectric Pore Size Distribution on Interfacial Adhesion of the Tantalum-Porous Dielectric Interface. MRS Online Proceedings Library 863, B6.6 (2004). https://doi.org/10.1557/PROC-863-B6.6

Download citation

Key Words

  • Fracture energy
  • Porous Substrate
  • Telephone Cords
  • Pore Size Corresponding Author Tel: (518) 276 6049