Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer


Poly(p-xylylene) (also known as parylene N) has previously been used to pore seal ultralow k (≤ 2.2) (ULK) dielectrics. The parylene polymers may facilitate the integration of ULK dielectrics by: substantially improving their fracture toughness, hermetically sealing the pores, being able to use standard wet chemical cleans, and minimally impacting the observed dielectric constant, while minimally disrupting current process flow integrations. This paper introduces a new cross-linkable polymer that is deposited using thermal chemical vapor deposition (CVD) on the same tool that is used for parylene N deposition. The polymer, poly(ethynyl-p-xylylene) (parylene X), was deposited at room temperature. A series of 30 min post-deposition anneals in helium shows that the deposited material cross-linked between 200°C and 300°C with full conversion at 380°C for a ~300 A film. After the low molecular weight species out-gassed during anneals at 200°C, there was less than a percent weight loss to 450°C with no change in the optical constants and no optical loss. Previous work with poly(ethyl-p-xylylene) suggests that the dielectric constant of parylene X will be significantly lower than parylene N.

This is a preview of subscription content, access via your institution.


  1. 1

    D. Maidenberg, W. Volksen, R. Miller, and R. H. Dauskardt, Nature Materials, 3, 464–9 (2004).

    CAS  Article  Google Scholar 

  2. 2

    B. Xie ad A.J. Muscat, Proc. – Electrochem. Soc. 2003–26, no. Cleaning Technology in Semiconductor Device Manufacturing VIII, 279–288 (2004).

    Google Scholar 

  3. 3

    X. Hua, C. Stolz, G.S. Oehrlein, P. Lazzeri, N. Coghe, M. Anderle, C.K. Inoki, T.S. Kuan, P. Jiang, J. Vac. Sci. Technol, A, 23, 151–164 (2005).

    CAS  Article  Google Scholar 

  4. 4

    C. Jezewski, W.A. Lanford, J.J. Senkevich, C. J. Wiegand, A. Mallikarjunan, D. Lu, G.-C. Wang, T.-M. Lu, C. Jin, J. Electrochem. Soc., 151(7) F157–161 (2004).

    CAS  Article  Google Scholar 

  5. 5

    D.L. Bae, C. Jezewski, T.S. Cale,a and J.J. Senkevich, In Press Chem. Vapor Dep

  6. 6

    W.F. Gorham, J. Polym. Sci: Part A-1 4, 3027–39 (1966).

    CAS  Article  Google Scholar 

  7. 7

    C. Xu and T.H. Baum, Mat. Res. Soc. Symp. Proc. 555, 155–160 (1999).

    CAS  Article  Google Scholar 

  8. 8

    J.J. Senkevich, S.B. Desu, Chem. Mat. 11(7), 1814–21 (1999).

    CAS  Article  Google Scholar 

  9. 9

    J.J. Senkevich, A. Mallikarjunan, C.J. Wiegand, T.-M. Lu, H.N. Bani-Salameh, and R.L. Lichti, Electrochem. Solid-State Lett. 7(4) G56–58 (2004).

    CAS  Article  Google Scholar 

  10. 10

    J.J. Senkevich, Chem. Vap. Deposition 5(6), 257–60 (1999).

    CAS  Article  Google Scholar 

  11. 11

    J.J. Senkevich, G.-R. Yang, and T.-M. Lu, Colloids and Surfaces A 216 167–173 (2003).

    Article  Google Scholar 

  12. 12

    W.F. Beach, C. Lee, D.R. Bassett, T.M. Austin, and R. Olson, Encycl. Polym. Sci. Eng. 17, 990–1025, Wiley, New York (1989).

    Google Scholar 

  13. 13

    J.J. Senkevich, C.J. Mitchell, A. Vijayaraghavan, E.V. Barnat, J.F. McDonald, T.-M. Lu, J. Vac. Sci. & Tech. A 20(4) 1445–9 (2002).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jay J. Senkevich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carrow, B.P., Murray, R.E., Woods, B.W. et al. Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer. MRS Online Proceedings Library 863, B2.10 (2004). https://doi.org/10.1557/PROC-863-B2.10

Download citation