High-Yield Synthesis of Luminescent Silicon Quantum Dots in a Continuous Flow Non thermal Plasma Reactor


Light-emission from silicon based on quantum confinement in nanoscale structures has sparked intense research into this field ever since its discovery about 15 years ago. The lack of a simple high-yield synthesis approach for luminescent silicon nanocrystals has so far hampered their widespread application in such diverse areas as opto-electronics, solid-state lighting for general illumination, and fluorescent agents for biological applications. In this paper we discuss a non-thermal plasma process for the synthesis of luminescent silicon nanocrystals. The particle size is mainly controlled by the residence time in the plasma region. The system is capable of producing several tens of milligrams of luminescent powder per hour.

This is a preview of subscription content, access via your institution.


  1. 1

    S. Furukawa and T. Miyasato, Three-dimensional Quantum Well Effects in Ultrafine Silicon Particles, in Jpn. J. Appl. Phys. 1988. p. L2207.

    Google Scholar 

  2. 2

    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. 1990. Appl. Phys. Lett., 57: p. 1046.

    CAS  Article  Google Scholar 

  3. 3

    A.G. Cullis and L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. 1991. Nature, 335: p. 335–338.

    Article  Google Scholar 

  4. 4

    K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, and L.E. Brus, A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction. 1993. J. Phys. Chem., 97: p. 1224–1230.

    CAS  Article  Google Scholar 

  5. 5

    W.L. Wilson, P.F. Szajowski, and L.E. Brus, Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals. 1993. Science, 262(5137): p. 1242–1244.

    CAS  Article  Google Scholar 

  6. 6

    Z.H. Lu, D.J. Lockwood, and J.-M. Baribeau, Quantum confinement and light emission in SiO2/Si superlattices. 1995. Nature, 378: p. 258–260.

    CAS  Article  Google Scholar 

  7. 7

    K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, and P.M. Fauchet, Silicon-based visible light-emitting devices integrated into microelectronic circuits. 1996. Nature, 384(6607): p. 338–341.

    CAS  Article  Google Scholar 

  8. 8

    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, Optical gain in silicon nanocrystals. 2000. Nature, 408: p. 440–444.

    CAS  Article  Google Scholar 

  9. 9

    L.E. Brus, P.J. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, and P.H. Citrin, Electronic Spectroscopy and Photophysics of Si Nanocrystals: Relationship to Bulk c-Si and Porous Si. 1995. J. Am. Chem. Soc., 117: p. 2915–2922.

    CAS  Article  Google Scholar 

  10. 10

    A. Puzder, A.J. Williamson, J.C. Grossman, and G. Galli, Surface Chemistry of Silicon Nanoclusters. 2002. Phys. Rev. Lett., 88(9): p. 097401–4.

    Article  Google Scholar 

  11. 11

    J.P. Wilcoxon and G.A. Samara, Tailorable, visible light emission from silicon nanocrystals. 1999. Appl. Phys. Lett., 74(21): p. 3164–3166.

    CAS  Article  Google Scholar 

  12. 12

    J.D. Holmes, K.J. Ziegler, C. Doty, L.E. Pell, K.P. Johnston, and B.A. Korgel, Highly luminescent silicon nanocrystals with discrete optical transitions. 2001. J. Am. Chem. Soc., 123: p. 3743–3748.

    CAS  Article  Google Scholar 

  13. 13

    K.A. Pettigrew, Q. Liu, P.P. Power, and S.M. Kauzlarich, Solution Synthesis of Alkyl-and Alkyl/Alkoxy-Capped Silicon Nanoparticles via Oxidation of Mg2Si. 2003. Chemistry of Materials, 15(21): p. 4005–4011.

    CAS  Article  Google Scholar 

  14. 14

    R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G.-y. Liu, and S.M. Kauzlarich, Room Temperature Solution Synthesis of Alkyl-Capped Tetrahedral Shaped Silicon Nanocrystals. 2002. Journal of the American Chemical Society, 124(7): p. 1150–1151.

    CAS  Article  Google Scholar 

  15. 15

    M.L. Ostraat, J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan, and H.A. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. 2001. Applied Physics Letters, 79(3): p. 433–435.

    CAS  Article  Google Scholar 

  16. 16

    P.E. Batson and J.R. Heath, Electron energy loss spectroscopy of single silicon nanocrystals: the conduction band. 1993. Physical Review Letters, 71(6): p. 911–14.

    CAS  Article  Google Scholar 

  17. 17

    M. Ehbrecht and F. Huisken, Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. 1999. Physical Review B: Condensed Matter and Materials Physics, 59(4): p. 2975–2985.

    CAS  Article  Google Scholar 

  18. 18

    X. Li, Y. He, S.S. Talukdar, and M.T. Swihart, Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum. 2003. Langmuir, 19(20): p. 8490–8496.

    CAS  Article  Google Scholar 

  19. 19

    U. Kortshagen and U. Bhandarkar, Modeling of particulate coagulation in low pressure plasmas. 1999. Phys. Rev. E, 60(1): p. 887.

    Google Scholar 

  20. 20

    A. Bapat, C. Anderson, C.R. Perrey, C.B. Carter, S.A. Campbell, and U. Kortshagen, Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. 2004. Plasma Phys. and Controlled Fusion, 46(12): p. B97–B109.

    CAS  Article  Google Scholar 

  21. 21

    L. Mangolini, E. Thimsen, and U. Kortshagen, High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. 2005. Nano Letters, DOI: 10.1021/nl050066y.

    Google Scholar 

Download references


This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0212302, by NSF under IGERT award number DGE-0114372, and by InnovaLight, Inc. We acknowledge Dr. Christopher R. Perrey and Professor C. Barry Carter for support with high-resolution TEM and Professor David Norris and Ms. Lijun Zu for support with photoluminescence measurements.

Author information



Corresponding author

Correspondence to L. Mangolini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mangolini, L., Thimsen, E. & Kortshagen, U. High-Yield Synthesis of Luminescent Silicon Quantum Dots in a Continuous Flow Non thermal Plasma Reactor. MRS Online Proceedings Library 862, 43 (2004). https://doi.org/10.1557/PROC-862-A4.3

Download citation