Ge Growth on Nanostructured Silicon Surfaces


We report highest quality Ge epilayers on nanoscale patterned Si structures. 100% Ge films of 10 μm are deposited using chemical vapor deposition. The quality of Ge layers was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution x-ray diffraction (HRXRD) measurements. The defect density was evaluated using etch pit density measurements. We have obtained lowest dislocation density (5×105 cm−2) Ge films on the nanopatterned Si structures. The full width half maximum peaks of the reciprocal space maps of Ge epilayers on the nanopatterned Si showed 93 arc sec. We were able to get rid of the crosshatch pattern on the Ge surface grown on the nanopatterned Si. We also showed that there is a significant improvement of the quality of the Ge epilayers in the nanopatterned Si compared to an unpatterned Si. We observed nearly three-order magnitude decrease in the dislocation density in the patterned compared to the unpatterned structures. The Ge epilayer in the patterned Si has a dislocation density of 5×105 cm−2 as compared to 6×108 cm−2 for unpatterned Si.

This is a preview of subscription content, access via your institution.


  1. 1

    J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, Appl. Phys. Lett., 76, 1884 (2000).

    CAS  Article  Google Scholar 

  2. 2

    G. Masini, L. Colace and G. Assanto, Appl. Phys. Lett., 82, 2524 (2003).

    CAS  Article  Google Scholar 

  3. 3

    S. A. Ringel, J. A. Carlin, C. A. Andre, D. M. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, C. W. Leitz, A. A. Allerman, and E. A. Fitzgerald, Prog. Photovoltaics 10, 417 (2002).

    CAS  Article  Google Scholar 

  4. 4

    M. A. Lutz, R. M. Feenstra, F. K. Legoues. P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).

    CAS  Article  Google Scholar 

  5. 5

    A. Ackaert, L. Buydens, D. Lootens, P. Van Daele, and P. Demeester, Appl. Phys. Lett. 55, 2187 (1989).

    CAS  Article  Google Scholar 

  6. 6

    S. Sakai, Appl. Phys. Lett. 51, 1069 (1987).

    CAS  Article  Google Scholar 

  7. 7

    O. Wada and J. Crow in Integrated Optoelectronics, Edited by M. Dagenais, R. F. Leheney, and J. Crow, Academic Press (1995).

  8. 8

    M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, Appl. Phys. Lett. 72, 1718 (1998).

    CAS  Article  Google Scholar 

  9. 9

    O. Nur, M. Karlsteen, U. Södervall, M. Willander, C. J. Patel, C. Hernandez, Y. Campidelli, D. Bensahel and R. N. Kyutt, Semicond. Sci. Technol., 15, L25 (2000).

    CAS  Article  Google Scholar 

  10. 10

    J. W. Mathews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).

    Article  Google Scholar 

  11. 11

    G. Vanamu, and A. K. Datye and S. H. Zaidi, Mat. Res. Soc. Symp. Proc. Vol. 809 (2004).

  12. 12

    S H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 693 (1994).

    Google Scholar 

  13. 13

    S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).

    Article  Google Scholar 

  14. 14

    S. H. Zaidi, United States Patent, Patent No. US 6,835,246 B2, Dec 28, 2004.

  15. 15

    D.P. Malta, J.B. Posthill, R.J. Markunas, T.P. Humphreys, Appl. Phys. Lett. 60, 844 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ganesh Vanamu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanamu, G., Datye, A.K. & Zaidi, S.H. Ge Growth on Nanostructured Silicon Surfaces. MRS Online Proceedings Library 862, 26 (2004).

Download citation