Skip to main content
Log in

Ge Growth on Nanostructured Silicon Surfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report highest quality Ge epilayers on nanoscale patterned Si structures. 100% Ge films of 10 μm are deposited using chemical vapor deposition. The quality of Ge layers was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution x-ray diffraction (HRXRD) measurements. The defect density was evaluated using etch pit density measurements. We have obtained lowest dislocation density (5×105 cm−2) Ge films on the nanopatterned Si structures. The full width half maximum peaks of the reciprocal space maps of Ge epilayers on the nanopatterned Si showed 93 arc sec. We were able to get rid of the crosshatch pattern on the Ge surface grown on the nanopatterned Si. We also showed that there is a significant improvement of the quality of the Ge epilayers in the nanopatterned Si compared to an unpatterned Si. We observed nearly three-order magnitude decrease in the dislocation density in the patterned compared to the unpatterned structures. The Ge epilayer in the patterned Si has a dislocation density of 5×105 cm−2 as compared to 6×108 cm−2 for unpatterned Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, Appl. Phys. Lett., 76, 1884 (2000).

    Google Scholar 

  2. G. Masini, L. Colace and G. Assanto, Appl. Phys. Lett., 82, 2524 (2003).

    Google Scholar 

  3. S. A. Ringel, J. A. Carlin, C. A. Andre, D. M. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, C. W. Leitz, A. A. Allerman, and E. A. Fitzgerald, Prog. Photovoltaics 10, 417 (2002).

    Google Scholar 

  4. M. A. Lutz, R. M. Feenstra, F. K. Legoues. P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).

    Google Scholar 

  5. A. Ackaert, L. Buydens, D. Lootens, P. Van Daele, and P. Demeester, Appl. Phys. Lett. 55, 2187 (1989).

    Google Scholar 

  6. S. Sakai, Appl. Phys. Lett. 51, 1069 (1987).

    Google Scholar 

  7. O. Wada and J. Crow in Integrated Optoelectronics, Edited by M. Dagenais, R. F. Leheney, and J. Crow, Academic Press (1995).

  8. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, Appl. Phys. Lett. 72, 1718 (1998).

    Google Scholar 

  9. O. Nur, M. Karlsteen, U. Södervall, M. Willander, C. J. Patel, C. Hernandez, Y. Campidelli, D. Bensahel and R. N. Kyutt, Semicond. Sci. Technol., 15, L25 (2000).

    Google Scholar 

  10. J. W. Mathews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).

    Google Scholar 

  11. G. Vanamu, and A. K. Datye and S. H. Zaidi, Mat. Res. Soc. Symp. Proc. Vol. 809 (2004).

  12. S H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 693 (1994).

    Google Scholar 

  13. S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).

    Google Scholar 

  14. S. H. Zaidi, United States Patent, Patent No. US 6,835,246 B2, Dec 28, 2004.

  15. D.P. Malta, J.B. Posthill, R.J. Markunas, T.P. Humphreys, Appl. Phys. Lett. 60, 844 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanamu, G., Datye, A.K. & Zaidi, S.H. Ge Growth on Nanostructured Silicon Surfaces. MRS Online Proceedings Library 862, 26 (2004). https://doi.org/10.1557/PROC-862-A2.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-862-A2.6

Navigation