Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition

Abstract

We have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm−3). The hydrogen concentration is found to increase substantially with film thickness from 5•1018 to 5•1019 cm−3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.

This is a preview of subscription content, access via your institution.

References

  1. 1

    D.J. Eaglesham, H.J. Gossmann and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).

    CAS  Article  Google Scholar 

  2. 2

    C. Rosenblad, H.R. Deller, A. Dommann, T. Meyer, P. Schroeter and H. von Kanel, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 16, 2785 (1998).

    CAS  Article  Google Scholar 

  3. 3

    B. Rau, I. Sieber, B. Selle, S. Brehme, U. Knipper, S. Gall and W. Fuhs, Thin Solid Films 451-52, 644 (2004).

    Article  Google Scholar 

  4. 4

    J. Schwarzkopf, B. Selle, W. Bohne, J. Rohrich, I. Sieber and W. Fuhs, J. of Appl. Phys. 93, 5215 (2003).

    CAS  Article  Google Scholar 

  5. 5

    H. Seitz and B. Schroder, Solid State Commun. 116, 625 (2000).

    CAS  Article  Google Scholar 

  6. 6

    J. Thiesen, E. Iwaniczko, K.M. Jones, A. Mahan and R. Crandall, Appl. Phys. Lett. 75, 992 (1999).

    CAS  Article  Google Scholar 

  7. 7

    M.S. Mason, C.M. Chen and H.A. Atwater, Thin Solid Films 430, 54 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Q. Wang, M.R. Page, X.Q. Xu, E. Iwaniczko, E. Williams and T.H. Wang, Thin Solid Films 430, 208 (2003).

    CAS  Article  Google Scholar 

  9. 9

    R.B. Bergmann, C. Zaczek, N. Jansen, S. Oelting and J.H. Werner, Appl. Phys. Lett. 72, 2996 (1998).

    CAS  Article  Google Scholar 

  10. 10

    R.W. Collins and A.S. Ferlauto, Current Opinion in Solid State & Materials Science 6, 425 (2002).

    CAS  Article  Google Scholar 

  11. 11

    S. Kim and R.W. Collins, Appl. Phys. Lett. 67, 3010 (1995).

    CAS  Article  Google Scholar 

  12. 12

    C.W. Teplin, E. Iwaniczko, J.D. Perkins, D.H. Levi, K.M. Jones, and H.M. Branz, accepted for publication in J. of Appl. Phys.

  13. 13

    D.J. Eaglesham, J. of Appl. Phys. 77, 3597 (1995).

    CAS  Article  Google Scholar 

  14. 14

    M. Nerding, L. Oberbeck, T.A. Wagner, R.B. Bergmann and H.P. Strunk, J. of Appl. Phys. 93, 2570 (2003).

    CAS  Article  Google Scholar 

  15. 15

    M.J. Binns, S.A. McQuaid, R.C. Newman and E.C. Lightowlers, Semiconductor Science And Technology 8, 1908 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Note that cross sections that do not cut directly through the nucleation point of a cone appear as hyperbolas and seem to have larger growth angles.

  17. 17

    H. Jorke, H.J. Herzog and H. Kibbel, Phys. Rev. B. 40, 2005 (1989).

    CAS  Article  Google Scholar 

  18. 18

    J. Thiesen, H.M. Branz and R.S. Crandall, Appl. Phys. Lett. 77, 3589 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dean Levi, Dick Crandall, Qi Wang, and Paul Stradins for useful discussions. This work is supported by the U.S. DOE under Contract #DE-AC36 -99G010337.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles W. Teplin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teplin, C.W., Iwaniczko, E., Jones, K.M. et al. Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition. MRS Online Proceedings Library 862, 23 (2004). https://doi.org/10.1557/PROC-862-A2.3

Download citation