Skip to main content
Log in

Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm−3). The hydrogen concentration is found to increase substantially with film thickness from 5•1018 to 5•1019 cm−3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Eaglesham, H.J. Gossmann and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).

    Google Scholar 

  2. C. Rosenblad, H.R. Deller, A. Dommann, T. Meyer, P. Schroeter and H. von Kanel, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 16, 2785 (1998).

    Google Scholar 

  3. B. Rau, I. Sieber, B. Selle, S. Brehme, U. Knipper, S. Gall and W. Fuhs, Thin Solid Films 451-52, 644 (2004).

    Google Scholar 

  4. J. Schwarzkopf, B. Selle, W. Bohne, J. Rohrich, I. Sieber and W. Fuhs, J. of Appl. Phys. 93, 5215 (2003).

    Google Scholar 

  5. H. Seitz and B. Schroder, Solid State Commun. 116, 625 (2000).

    Google Scholar 

  6. J. Thiesen, E. Iwaniczko, K.M. Jones, A. Mahan and R. Crandall, Appl. Phys. Lett. 75, 992 (1999).

    Google Scholar 

  7. M.S. Mason, C.M. Chen and H.A. Atwater, Thin Solid Films 430, 54 (2003).

    Google Scholar 

  8. Q. Wang, M.R. Page, X.Q. Xu, E. Iwaniczko, E. Williams and T.H. Wang, Thin Solid Films 430, 208 (2003).

    Google Scholar 

  9. R.B. Bergmann, C. Zaczek, N. Jansen, S. Oelting and J.H. Werner, Appl. Phys. Lett. 72, 2996 (1998).

    Google Scholar 

  10. R.W. Collins and A.S. Ferlauto, Current Opinion in Solid State & Materials Science 6, 425 (2002).

    Google Scholar 

  11. S. Kim and R.W. Collins, Appl. Phys. Lett. 67, 3010 (1995).

    Google Scholar 

  12. C.W. Teplin, E. Iwaniczko, J.D. Perkins, D.H. Levi, K.M. Jones, and H.M. Branz, accepted for publication in J. of Appl. Phys.

  13. D.J. Eaglesham, J. of Appl. Phys. 77, 3597 (1995).

    Google Scholar 

  14. M. Nerding, L. Oberbeck, T.A. Wagner, R.B. Bergmann and H.P. Strunk, J. of Appl. Phys. 93, 2570 (2003).

    Google Scholar 

  15. M.J. Binns, S.A. McQuaid, R.C. Newman and E.C. Lightowlers, Semiconductor Science And Technology 8, 1908 (1993).

    Google Scholar 

  16. Note that cross sections that do not cut directly through the nucleation point of a cone appear as hyperbolas and seem to have larger growth angles.

  17. H. Jorke, H.J. Herzog and H. Kibbel, Phys. Rev. B. 40, 2005 (1989).

    Google Scholar 

  18. J. Thiesen, H.M. Branz and R.S. Crandall, Appl. Phys. Lett. 77, 3589 (2000).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dean Levi, Dick Crandall, Qi Wang, and Paul Stradins for useful discussions. This work is supported by the U.S. DOE under Contract #DE-AC36 -99G010337.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplin, C.W., Iwaniczko, E., Jones, K.M. et al. Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition. MRS Online Proceedings Library 862, 23 (2004). https://doi.org/10.1557/PROC-862-A2.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-862-A2.3

Navigation