CO2 laser annealing synthesis of silicon nanocrystals buried in Si-rich SiO2


Localized synthesis of 3–8 nm Si nanocrystals (nc-Si) in PECVD-grown Si-rich SiO2(SRSO) film is demonstrated using CO2 laser annealing at an intensity below the ablation-threshold (6.0 kW/cm2). At an optimized surface temperature of 1285°C, the precipitated nc-Si in CO2-laser-annealed SRSO film results in near-infrared photoluminescence (PL) at 806 nm, whereas the ablation damage induced at higher laser intensities as well as temperatures results in blue PL at 410 nm related to structural defects. The refractive index of the laser-annealed SRSO at 633 nm increases from 1.57 to 2.31 as the laser intensity increases from 1.5 to 6.0 kW/cm2. Transmission electron microscopy analysis reveals that the average size and volume density of Si nanocrystals embedded in the SRSO film are about 6 nm and 4.5×1016 cm−3, respectively. The CO2 laser annealing with controlled intensity and spot size can potentially accomplish in-situ, localized annealing of the SRSO film without causing irreversible damage to nearby electronics.

This is a preview of subscription content, access via your institution.


  1. 1

    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000).

    CAS  Article  Google Scholar 

  2. 2

    M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte, Mater. Sci. Eng. B 69-70, 299 (2000).

    Article  Google Scholar 

  3. 3

    A. Janotta, Y. Dikce, M. Schmidt, C. Eisele, M. Stutzmann, M. Luysberg, and L. Houben, J. Appl. Phys. 95, 4060 (2004).

    CAS  Article  Google Scholar 

  4. 4

    B. Gallas, C.-C. Kao, S. Fisson, G. Vuye, J. Rivory, Y. Bernard, and C. Belouet, Appl. Surf. Sci. 185, 317 (2002).

    CAS  Article  Google Scholar 

  5. 5

    E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Washington, 1985).

    Google Scholar 

  6. 6

    T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, J. Appl. Phys. 86, 1311 (1999).

    CAS  Article  Google Scholar 

  7. 7

    J. Zhao, J. Sullivan, J. Zayac, and T. D. Bennett, J. Appl. Phys. 95, 5475 (2004).

    CAS  Article  Google Scholar 

  8. 8

    G.-R. Lin, C. J. Lin, and C. K. Lin, Appl. Phys. Lett. 85, 935 (2004).

    CAS  Article  Google Scholar 

  9. 9

    H. Nishikawa, R. Nakamura, and J. H. Stathis, Phys. Rev. B. 60, 15910 (1999).

    CAS  Article  Google Scholar 

  10. 10

    F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, Mater. Sci. Eng. C 19, 377 (2002).

    Article  Google Scholar 

  11. 11

    C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B. 48, 11024 (1993).

    CAS  Article  Google Scholar 

  12. 12

    J. C. Cheang-Wong, A. Oliver, J. Roiz, and J. M. Hernánaez, L. Rodríguez-Fernández, J. G. Morales, A. Crespo-Sosa, Nucl. Instrum. Methods Phys. Res. B. 175, 490 (2001).

    Article  Google Scholar 

Download references


This work was supported in part by the National Science Council (NSC) of the Republic of China under grant NSC 93-2215-E-009-007.

Author information



Corresponding author

Correspondence to Gong-Ru Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, CJ., Chueh, YL., Chou, LJ. et al. CO2 laser annealing synthesis of silicon nanocrystals buried in Si-rich SiO2. MRS Online Proceedings Library 862, 192 (2004).

Download citation