Skip to main content
Log in

Novel in situ and real-time optical probes to detect (surface) defect states of a-Si:H

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper describes two novel optical diagnostics that were recently introduced to the field of Si-based thin films, in particular for probing defect states present in the bulk and at the surface of a-Si:H films. It is expected that these diagnostics, when applied in situ or real time during film growth, can provide new insights into the a-Si:H film properties as well as into the fundamental surface processes during growth. The first method is cavity ringdown spectroscopy (CRDS). From ex situ measurements on a-Si:H thin films, it is shown that this method is very powerful for measuring absolute defect-related absorptions at subgap energies without the need for a calibration procedure, even for films as thin as 4 nm. It is also shown that the method can be used for measuring rare-earth dopants - here Er3+ in silicon-rich oxide - to the extent that issues about absorption cross-sections can be resolved by using thin samples instead of waveguides. Furthermore, the in situ application of the method for thin films is discussed by presenting the evanescent-wave cavity ringdown (EW-CRDS) technique. The second method is spectroscopic second harmonic generation (SHG). It has been found that this non-linear optical technique yields a photon energy dependent signal for as-deposited a-Si:H films and that this signal has a contribution from a-Si:H surface states. From a comparison with c-Si surface science studies, the possible origin of the signal from surface Si dangling bonds and strained Si-Si bonds is discussed. The application of SHG during real-time film growth is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perrin, M. Shiratani, P. Kae-Nune, H. Videlot, J. Jolly, and J. Guillon, J. Vac. Sci. Technol. A 16, 278 (1998).

    Google Scholar 

  2. J. P. M. Hoefnagels, Y. Barrell, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 96, 4094 (2004).

    Google Scholar 

  3. R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce, and C. R. Wronski, Sol. En. Mater. Sol. Cells 78, 143 (2003).

    Google Scholar 

  4. H. Fujiwara, M. Kondo, and A. Matsuda, J. Appl. Phys. 91, 4181 (2002)

    Google Scholar 

  5. D. H. Levi, B. P. Nelson, and R. Reedy, Thin Solid Films 430, 20 (2003).

    Google Scholar 

  6. B.A. Sperling and J.R. Abelson, Appl. Phys. Lett. 85, 3456 (2004).

    Google Scholar 

  7. A.H.M. Smets, W.M.M. Kessels, and M.C.M. van de Sanden, Appl. Phys. Lett. 82, 865 (2003).

    Google Scholar 

  8. Y. Toyoshima, K. Arai, A. Matsuda, and K. Tanaka, J. Non-Cryst. Solids 137-138, 765 (1991).

    Google Scholar 

  9. A. Von Keudell and J.R. Abelson, Phys. Rev. B 59, 5791 (1999).

    Google Scholar 

  10. D.C. Marra, W.M.M. Kessels, M.C.M. van de Sanden, K. Kashefizadeh, and E.S. Aydil, Surf. Sci. 530, 1 (2003).

    Google Scholar 

  11. W.M.M. Kessels, J.P.M. Hoefnagels, P.J. van den Oever, Y. Barrell, and M.C.M. van de Sanden, Surf. Sci. Lett. 547, 865 (2003).

    Google Scholar 

  12. M.S. Valipa, E.S. Aydil, and D. Maroudas, Surf. Sci. Lett. 572, L339 (2004).

    Google Scholar 

  13. S. Yamasaki, T. Umeda, J. Isoya, and K. Tanaka, J. Non-Crys. Solids 227-230, 83 (1998).

    Google Scholar 

  14. A. O'Keefe and D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988); G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Google Scholar 

  15. W.M.M. Kessels, J.P.M. Hoefnagels, M.G.H. Boogaarts, D.C. Schram, and M.C.M. van de Sanden, J. Appl. Phys. 89, 2065 (2001); W.M.M. Kessels, F.J.H. van Assche, J. Hong, D.C. Schram, and M.C.M. van de Sanden, J. Vac. Sci. Technol. A 22, 96 (2004); and references therein.

    Google Scholar 

  16. R. Engeln, G. Von Helden, A.J.A. van Roij, and G. Meijer, Chem. Phys. Lett. 110, 2732 (1999).

    Google Scholar 

  17. G.A. Marcus and H.A. Schwettman, Appl. Opt. 41, 5167 (2002).

    Google Scholar 

  18. S.L. Logunov, Appl. Opt. 40, 1570 (2001).

    Google Scholar 

  19. I.M.P. Aarts, B. Hoex, A.H.M. Smets, R. Engeln, W.M.M. Kessels, and M.C.M. van de Sanden, Appl. Phys. Lett. 84, 3079 (2004).

    Google Scholar 

  20. I.M.P. Aarts, B. Hoex, A.H.M. Smets, R. Engeln, M.C.M. van de Sanden, and W.M.M. Kessels, to be published.

  21. A. Asano and M. Stutzmann, J. Appl. Phys. 70, 5025 (1991).

    Google Scholar 

  22. I.M.P. Aarts, M.C.M. van de Sanden, and W.M.M. Kessels, J. Non-Cryst. Solids 338-340, 408 (2004).

    Google Scholar 

  23. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, Appl. Phys. Lett. 63, 1942 (1993).

    Google Scholar 

  24. P.G. Kik and A. Polman, J. Appl. Phys. 91, 534 (2002).

    Google Scholar 

  25. H. Mertens, A. Polman, I.M.P. Aarts, W.M.M. Kessels, and M.C.M. van de Sanden, accepted for publication in Appl. Phys. Lett. (2005).

    Google Scholar 

  26. A.C.R. Pipino, Appl. Opt. 39, 1449 (2000).

    Google Scholar 

  27. A.C.R. Pipino, J.P.M. Hoefnagels, and N. Watanabe, J. Chem. Phys. 120, 2879 (2004).

    Google Scholar 

  28. I.M.P. Aarts, A.C.R. Pipino, J.P.M. Hoefnagels, W.M.M. Kessels, and M.C.M. van de Sanden, submitted for publication.

  29. Y.R. Shen, Nature} 337, 519 (1989).

    Google Scholar 

  30. G.A. Reider and T.F. Heinz, Photonic probes of surfaces, ed. by P. Halevi (Elsevier, Amsterdam, 1995)

  31. U. Höfer, Appl. Phys. A: Mater. Sci. Process. A 63, 533 (1995).

    Google Scholar 

  32. K. Pedersen and P. Morgen, Phys. Rev. B. 52, R2277 (1995).

    Google Scholar 

  33. T. Suzuki, Phys. Rev. B.. 61, R5117 (2000).

    Google Scholar 

  34. W. Daum, H.-J. Krause, U. Reichel, and H. Ibach, Phys. Rev. Lett. 71, 1234 (1993).

    Google Scholar 

  35. J.P.M. Hoefnagels, E. Langereis, M.C.M. van de Sanden, and W.M.M. Kessels, Mater. Res. Soc. Proc. 808, A9.24, (2004).

    Google Scholar 

  36. W.M.M. Kessels, J.J.H. Gielis, I.M.P. Aarts, C.M. Leewis, and M.C.M. van de Sanden, Appl. Phys. Lett. 85, 4049 (2004).

    Google Scholar 

  37. I.M.P. Aarts, J.J.H. Gielis, M.C.M. van de Sanden, and W.M.M. Kessels, submitted for publication.

Download references

Acknowledgments

The authors acknowledge the following people for their important contributions: M. Nesládek (Limburgs Universitair Centrum) for the PDS measurements; H. Mertens and Prof. A. Polman (Center for Nanophotonics, FOM-Institute AMOLF) for the collaboration on the Er-doped Si- rich oxide experiments; Dr. A.C.R. Pipino (NIST) for the collaboration on the EW-CRDS technique; B. Hoex and dr. R. Engeln (Eindhoven Univ. of Technology) for the experiments and discussions; and M.J.F. van de Sande, J.F.C. Jansen, A.B.M. Hüsken, and H.M.M. de Jong for their skilful technical assistance. This work was supported by the Netherlands Foundation for Fundamental Research on Matter (FOM). The research of W.K. has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessels, W., Aarts, I., Gielis, J. et al. Novel in situ and real-time optical probes to detect (surface) defect states of a-Si:H. MRS Online Proceedings Library 862, 143 (2004). https://doi.org/10.1557/PROC-862-A14.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-862-A14.3

Navigation