The Effects of Hydrogen Profiling and of Light-Induced Degradation on the Electronic Properties of Hydrogenated Nanocrystalline Silicon

Abstract

The electronic properties of hydrogenated nanocrystalline silicon (nc-Si:H) were studied using junction capacitance methods. Drive-level capacitance profiling (DLCP) measurements revealed significant differences for nc-Si:H layers deposited under constant hydrogen dilution compared to those deposited using hydrogen profiling, with lower DLCP densities in the latter case. Transient photocapacitance (TPC) measurements revealed the mixed-phase nature of these materials. It disclosed spectra that appeared quite microcrystalline-like at lower temperatures, but more similar to a-Si:H at higher temperatures where the minority carrier collection is higher in the nanocrystalline component of these samples. This then suppresses the TPC signal from this component compared to the a-Si:H component. In contrast, because transient photocurrent signals are enhanced by the additional minority carrier collection, those spectra appear microcrystalline like at all temperatures. We also investigated the effects of light-induced degradation in these devices. This caused a dramatic decrease in hole collection, similar to that caused by reducing the measurement temperature of the samples. However, the light exposure did not appear to increase the deep defect density (dangling bonds).

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. Meier, R. Flückiger, H. Keppner, and A. Shah, J. Appl. Phys., 65, 860 (1994).

    CAS  Google Scholar 

  2. 2

    See, for example, Y. Tawada, H. Yamagishi and K. Yamamoto, Sol. Energy Mat. and Sol. Cells, 78, 647 (2003).

    Article  Google Scholar 

  3. 3

    C. E. Michelson, A. V. Gelatos, and J. D. Cohen, J. Appl. Phys. Lett. 47, 412 (1985).

    CAS  Article  Google Scholar 

  4. 4

    A.V. Gelatos, K.K. Mahavadi, J.D. Cohen, and J.P. Harbison, Appl. Phys. Lett. 53, 403 (1988).

    CAS  Article  Google Scholar 

  5. 5

    B. Yan, G. Yue, J. Yang, S. Guha, D. L. Williamson, D. Han, and C.-S. Jiang, Appl. Phys. Lett. 85, 1955 (2004).

    CAS  Article  Google Scholar 

  6. 6

    A.V. Gelatos, J.D. Cohen, and J.P. Harbison, Appl. Phys. Lett. 49, 722 (1986).

    CAS  Article  Google Scholar 

  7. 7

    M. Vaněček, A. Poruba, Z. Remeš, N. Beck, and M. Nesládek, J. Non-Cryst. Solids 227–230, 967 (1998).

    Article  Google Scholar 

  8. 8

    W. Bronner, M. Mehring, and R. Brüggemann, Phys. Rev. B65, 165212 (2002).

    Article  Google Scholar 

  9. 9

    A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Sol. Energy Mat. Sol. Cells, 78, 469 (2003).

    CAS  Article  Google Scholar 

  10. 10

    P. Torres, J Meier, R. Flückiger, U. Kroll, J. A. Anna Selvan, H. Keppner, and A. Shah, J. Appl. Phys., 69, 2286 (1996).

    Google Scholar 

  11. 11

    B. Yan, G. Yue, J. M. Owens, J. Yang, and S. Guha, Appl. Phys. Lett. 85, 1925 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded under NREL subcontracts XAF-8-17619-05 at the University of Oregon and ZDJ-2-30630-19 at United Solar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A.F. Halverson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halverson, A., Gutierrez, J., Cohen, J. et al. The Effects of Hydrogen Profiling and of Light-Induced Degradation on the Electronic Properties of Hydrogenated Nanocrystalline Silicon. MRS Online Proceedings Library 862, 137 (2004). https://doi.org/10.1557/PROC-862-A13.7

Download citation