Molecular Dynamics Study of Grain Growth in Nanocrystalline Materials in the Presence of Dopants


Molecular dynamics simulations of bulk nanocrystalline Cu with dopant atoms segregated in the grain boundary regions were performed to investigate the impediment of grain growth during annealing at constant temperature of 800K. In this parametric study, the concentration and atomic radii mismatch between the dopants and the host atoms were systematically varied to determine how to most effectively retard grain growth. It is found that samples with positive excess enthalpy (AH) underwent various degrees of grain growth; however, when AH was negative, no coarsening occurred. Also, AH varied linearly with dopant concentration with the slope equal to the enthalpy of segregation, in agreement with previous theoretical work.

This is a preview of subscription content, access via your institution.


  1. [1]

    Haslam AJ, Phillpot SR, Wolf D, Moldovan D, Gleiter H. Mater. Sci. Eng. A 2001;318:293

    Article  Google Scholar 

  2. [2]

    Gertsman VY, Birringer R. Scripta Metall. Mater. 1994;30:577

    Google Scholar 

  3. [3]

    Weissmuller J, Loffler J, M. Kleber, Nanostruct. Mater. 1995;6:105

    Article  Google Scholar 

  4. [4]

    Gunther B, Kumpmann A, Kunze HD. Scripta Metall. Mater. 1992;27:833

    Article  Google Scholar 

  5. [5]

    Gibbs JW. In: The Collected Works of J.W. Gibbs, vol. 1. Green (NY): Longmans, 1928. p.55

    Google Scholar 

  6. [6]

    Weissmuller J, Krauss WK, Haubold T, Birringer R, Gleiter H. Nanostruct. Mater. 1992;1:439

    Article  Google Scholar 

  7. [7]

    Weissmuller J. Nanostruct. Mater. 1993;3:261

    Article  Google Scholar 

  8. [8]

    Weissmuller J. J. Mater. Res. 1994;9:4

    Article  Google Scholar 

  9. [9]

    Krill CE, Klein R, Janes S, Birringer R. Materials Science Forum 1995;179–181:443

    Google Scholar 

  10. [10]

    Millett PC, Selvam RP, Bansal S, Saxena A. submitted to Acta Mater. 2004

  11. [11]

    Millett PC, Selvam RP. Research report 2004. University of Arkansas

  12. [12]

    Voronoi GZ. J. Reine Angew. Math. 1908;134:199

    Google Scholar 

  13. [13]

    Okabe A, Boots B, Sugihara K. Spatial Tesselations: Concepts and applications of voronoi diagrams, Chichester: Wiley, 1992

    Google Scholar 

  14. [14]

    Lennard-Jones JE, Devonshire AF. Proc. of the Royals Soc. A 1937;163: 53

    Google Scholar 

  15. [15]

    Yu A, Amar JG. Phys. Rev. Let. 2002;89:286103

    Article  Google Scholar 

  16. [16]

    Leach AR. Molecular Modelling: Principles and Applications, 2nd edition. Prentice Hall, 2001. p.744

    Google Scholar 

  17. [17]

    Hoover WG. Phys. Rev. A 1985;31:1695

    Article  Google Scholar 

  18. [18]

    Bond SD, Leimkuhler BJ, Laird BB. J. Comp. Phys. 1999;151:114

    Article  Google Scholar 

  19. [19]

    Caro A, Van Swygenhoven H. Phys. Rev. B 2001;63:134101

    Article  Google Scholar 

Download references


P.C.M. would like to thank the support of the Distinguished Doctoral Fellowship provided by the Walton Foundation.

Author information



Corresponding author

Correspondence to Paul C. Millett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Millett, P.C., Selvam, R.P. & Saxena, A. Molecular Dynamics Study of Grain Growth in Nanocrystalline Materials in the Presence of Dopants. MRS Online Proceedings Library 854, U6.10 (2004).

Download citation