Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses

Abstract

First-principle, tight binding, and semi-empirical embedded atom calculations are used to investigate a tetragonal phase transformation in gold nanowires. As wire diameter is decreased, tight binding and modified embedded atom simulations predict a surface-stress-induced phase transformation from a face-centered-cubic (fcc) <100> nanowire into a body-centered-tetragonal (bct) nanowire. In bulk gold, all theoretical approaches predict a local energy minimum at the bct phase, but tight binding and first principle calculations predict elastic instability of the bulk bct phase. The predicted existence of the stable bct phase in the nanowires is thus attributed to constraint from surface stresses. The results demonstrate that surface stresses are theoretically capable of inducing phase transformation and subsequent phase stability in nanometer scale metallic wires under appropriate conditions.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann. J. Mater. Chem. 12, pp. 1765–1770 (2002).

    Article  CAS  Google Scholar 

  2. (2)

    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, pp. 353–389 (2003).

    Article  CAS  Google Scholar 

  3. (3)

    N. Agrait, G. Rubio, and S. Vieira, Phys. Rev. Lett. 74, 3995–3998 (1995).

    Article  CAS  Google Scholar 

  4. (4)

    M. Brandbyge, J. Schiotz, M. R. Sorensen, P. Stoltze, K. W. Jacobsen, J. K. Norskov, L. Olesen, E. Laegsgaard, I. Stensgaard, and F Besebbacher,, Phys. Rev. B 52, 8499–8514 (1995).

    Article  CAS  Google Scholar 

  5. (5)

    A. Stalder and U. Durig, J. Vac. Sci. Tech. 14, 1259–1263 (1996).

    Article  CAS  Google Scholar 

  6. (6)

    Y. Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 3455–3458 (1997).

    Article  CAS  Google Scholar 

  7. (7)

    H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  8. (8)

    A. I. Yanson, G. R. Bollinger, H. E. van der Brom, N. Agrait, and J. M. Ruitenbeek, Nature 395, 783–785 (1998).

    Article  CAS  Google Scholar 

  9. (9)

    P. E. Marszalek, W. J. Greenleaf, H. Li, A. F. Oberhauser, and J. M. Fernandez, Proc. Nat. Acad. Sci, 97, 6282–6286 (2000).

    Article  CAS  Google Scholar 

  10. (10)

    Y. Kondo and K. Takayanagi, Science 289, 606–608 (2000).

    Article  CAS  Google Scholar 

  11. (11)

    V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Let. 85, 4124–4127 (2000).

    Article  CAS  Google Scholar 

  12. (12)

    V. Rodrigues and D. Ugarte, Phys. Rev. B 63, 073405–1–073405–4 (2001).

    Article  CAS  Google Scholar 

  13. (13)

    B. Wang, S. Yin, G. Wang, A. Buldum, and J. Zhao (2001), Phys. Rev. Let. 86, 2046–2049.

    Article  CAS  Google Scholar 

  14. (14)

    Z. Y. Zhong, K. B. Male KB, and J. H. T Luong, Anal. Lett. 36 (15) 3097–3118 (2003).

    Article  CAS  Google Scholar 

  15. (15)

    P. Wagner, M. Hegner, P. Kernen, F. Zaugg, and G. Semenza, Biophys. Jour. 70 (5) 2052–2066 (1996).

    Article  CAS  Google Scholar 

  16. (16)

    C. E. Rabkeclemmer, A. J. Leavitt, and T. P. Beebe, Lang. 10 (6) 1796–1800 (1994).

    Article  CAS  Google Scholar 

  17. (17)

    C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis. Anal. Chem. 76 (11) 3194–3198 (2004).

    Article  CAS  Google Scholar 

  18. (18)

    J. Diao, K. Gall, M. Dunn (2003), Nature Materials, 2, pp. 656–660.

    Article  CAS  Google Scholar 

  19. (19)

    K. Jacobs, D. Zaziski, E. C. Scher, A. B. Herhold, and A. P. Alivisatos, Science, vol. 293, pp. 1803–1806 (2001).

    Article  CAS  Google Scholar 

  20. (20)

    D. Zaziski, S. Prilliman, E. C. Scher, M. Casula, J. Wickham, S. M. Clark, and A. P. Alivisatos, Nanoletters, vol. 4, pp. 943–946(2004).

    Article  CAS  Google Scholar 

  21. (21)

    G. B. Olson and H. Hartman (1982), J. De. Phys., vol. 43, pp. 855–865.

    Google Scholar 

  22. (22)

    S. Kanamaru, P. G. Leiman, V. A. Kostyuchenko, P. R. Chipman, V. V. Mesyanzhinov, F. Arisaka, and M. G. Rossmann, Nature, vol. 415, pp. 553–557 (2002).

    Article  CAS  Google Scholar 

  23. (23)

    F. Jona and P. M. Marcus, Phys. Rev. B, vol. 65, pp. 155403: 1–4 (2002).

    Article  CAS  Google Scholar 

  24. (24)

    X. Z. Ji, Y. Tian, and F. Jona, Phys. Rev. B, vol. 65, pp. 155404: 1–4 (2002).

    Article  CAS  Google Scholar 

  25. (25)

    J. M. Wills, O. Eriksson, P. Soderlind, and A. M. Boring, Phys. Rev. Lett., vol. 68, pp. 2802–2805 (1992).

    Article  CAS  Google Scholar 

  26. (26)

    M. J. Mehl and L. L. Boyer, Phys. Rev. B, 43, pp. 9498–9502 (1991).

    Article  CAS  Google Scholar 

  27. (27)

    M. J. Mehl, A. Aguayo, L. L. Boyce, and R. de Coss, Phys. Rev. B 70, 014105 (2004).

    Article  CAS  Google Scholar 

  28. (28)

    M. S. Daw, and M. I. Baskes, Phys. Rev. B 29 (12), 6443 (1984).

    Article  CAS  Google Scholar 

  29. (29)

    M.I Baskes, Phys. Rev. B 46, 2727–2742 (1992).

    Article  CAS  Google Scholar 

  30. (30)

    M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 54 (7): 4519–4530 (1996).

    Article  CAS  Google Scholar 

  31. (31)

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  32. (32)

    J. Diao, K. Gall and M. L. Dunn. J. Mech. Phys. Solids 52 (9), 1935–1962 (2004).

    Article  CAS  Google Scholar 

  33. (33)

    F. H. Streitz, R. C. Cammarata, and K. Sieradzki, Phys. Rev. B 49 (15), 10699–10706 (1994).

    Article  CAS  Google Scholar 

  34. (34)

    V. Fiorentini, M. Methfessel, and M. Scheffler, Phys. Rev. Lett. 71 (7): 1051–1054 (1993).

    Article  CAS  Google Scholar 

  35. (35)

    B. D. Yu BD and M. Scheffler, Phys. Rev. B, 56 (24): R15569–R15572 (1997).

    Article  Google Scholar 

  36. (36)

    R. J. Needs, M. J. Godfrey, and M. Mansfield, Surf. Sci. 242 (1–3): 215–221 (1991).

    Article  CAS  Google Scholar 

  37. (37)

    J. Kollar, L. Vitos, J. M. Osorio-Guillen, and R. Ahuja, Phys. Rev. B, 68 (24): 245417 (2003).

    Article  CAS  Google Scholar 

  38. (38)

    J. Diao, K. Gall and M. L. Dunn, Phys. Rev. B 70, 075413 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of KG, JD, and MLD is supported by Sandia National Laboratories, NSF, and DOE. The work of MH, NB, and MM was supported by ONR. Computer programs developed under the Department of Defense CHSSI program of the High Perfomance Computation Modernization Project (HCMCP) were utilized as well as the VASP code available at its facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiankuai Diao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gall, K., Haftel, M., Diao, J. et al. Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses. MRS Online Proceedings Library 854, U5.7 (2004). https://doi.org/10.1557/PROC-854-U5.7

Download citation