Abstract
The strain driven self-assembly of faceted Ge nanocrystals during epitaxy on Si(001) to form quantum dots (QDs) is by now well known. We have also recently provided an understanding of the thermodynamic driving force for directed assembly of QDs on bulk Si (extendable to other QD systems) based on local chemical potential and curvature of the surface. Silicon-on-insulator (SOI) produces unique new phenomena. The essential thermodynamic instability of the very thin crystalline layer (called the template layer) resting on an oxide can cause this layer, under appropriate conditions, to dewet, agglomerate, and self-organize into an array of Si nanocrystals. Using low-energy electron microscopy (LEEM), we observe this process and, with the help of first-principles total-energy calculations, we provide a quantitative understanding of this pattern formation. The Si nanocrystal pattern formation can be controlled by lithographic patterning of the SOI prior to the dewetting process. The resulting patterns of electrically isolated Si nanocrystals can in turn be used as a template for growth of nanostructures, such as carbon nanotubes (CNTs). Finally we show that this growth may be controlled by the flow dynamics of the feed gas across the substrate.
This is a preview of subscription content, access via your institution.
References
- 1.
W.M. Kane, J.P. Spratt, and L.W. Hershinger, J. Appl. Phys. 37, 2085–2089 (1966).
- 2.
P. Scharnhorst, Surf. Sci. 15, 380–6 (1969).
- 3.
R.E. Hummel, R.T. DeHoff, S. Matts-Goho, and W.M. Goho, Thin Solid Films 78, 1–14 (1981).
- 4.
J.-Y. Kwon, T.-S. Yoon, K.-B. Kim, and S.-H. Min, J. Appl. Phys. 93, 3270–8 (2003).
- 5.
D.J. Srolovitz, W. Yang, and M.G. Goldiner in Polycrystalline Thin Films: Structure, Texture, Properties, and Applications II, edited by H.J. Frost, M.A. Parker, C.A. Ross, and E.A. Holm, (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, Pa, 1996), pp. 3–13.
- 6.
A.R. Woll, P. Moran, E.M. Rehder, B. Yang, T.F. Kuech, and M.G. Lagally in Current Issues in Heteroepitaxial Growth - Stress Relaxation and Self Assembly, edited by E. Stach, E. Chason, R. Hull, and S. Bader, (Mater. Res. Soc. Symp. Proc. 696, Pittsburgh, Pa, 2002), pp. 119–24.
- 7.
S. Yamamoto, S. Masuda, H. Yasufuku, N. Ueno, Y. Harada, T. Ichinokawa, M. Kato, and Y. Sakai, J. Appl. Phys. 82, 2954–2960 (1997).
- 8.
Y. Ding, S. Yamamuro, D. Farrell, and S.A. Majetich, J. Appl. Phys. 93, 7411–7413 (2003).
- 9.
K. Yamagata and T. Yonehara, Appl. Phys. Lett. 61, 2557–9 (1992).
- 10.
Y. Ono, M. Nagase, M. Tabe, and Y. Takahashi, Jpn. J. Appl. Phys, Pt 1 34, 1728–35 (1995).
- 11.
N. Sugiyama, T. Tezuka, and A. Kurobe, J. Cryst. Growth 192, 395–401 (1998).
- 12.
B. Legrand, V. Agache, T. Melin, J.P. Nys, V. Senez, and D. Stievenard, J. Appl. Phys. 91, 106–11 (2002).
- 13.
R. Nuryadi, Y. Ishikawa, and M. Tabe, Appl. Surf. Sci. 159–160, 121–6 (2000).
- 14.
Y. Ishikawa, Y. Imai, H. Ikeda, and M. Tabe, Appl. Phys. Lett. 83, 3162–4 (2003).
- 15.
D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya, and D.C. Jacobson, Phys. Rev. Lett. 70, 1643–6 (1993).
- 16.
J.M. Bermond, J.J. Metois, X. Egea, and F. Floret, Suf. Sci. 330, 48–60 (1995).
- 17.
K.D. Brommer, M. Needels, B.E. Larson, and J.D. Joannopoulos, Phys. Rev. Lett. 68, 1355–8 (1992).
- 18.
J. Dabrowski, H.-J. Mussig, and G. Wolff, Phys. Rev. Lett. 73, 1660–3 (1994).
- 19.
A. Laracuente, S.C. Erwin, and L.J. Whitman, Phys. Rev. Lett. 81, 5177–80 (1998).
- 20.
B. Yang, P. Zhang, M.G. Lagally, G.-H. Lu, M. Huang, and F. Liu, Submitted to Physical Review Letters.
- 21.
L. Rayleigh, Proc. London Math. Soc. 10, 4 (1878).
- 22.
F. Liu, F. Wu, and M.G. Lagally, Chem. Rev. 97, 1045–1061 (1997).
- 23.
F. Wu and M.G. Lagally, Phys. Rev. Lett., 75, 2534 (1995).
- 24.
N.R. Franklin and H. Dai, Adv. Mat. 12, 890–894 (2000).
- 25.
T. Kitajima, B. Liu, and S.R. Leone, Appl. Phys. Lett. 80, 497 (2002).
- 26.
Y. Homma, Y. Kobayashi, T. Ogino, and T. Yamashita, Appl. Phys. Lett. 81, 2261 (2002).
- 27.
Y.J. Jung, Y. Homma, T. Ogino, Y. Kobayashi, D. Takagi, B. Wei, R. Vajtai, and P.M. Ajayan, J. Phys. Chem. B 107, 6859–6864 (2003).
- 28.
At atmospheric pressure, the flow velocity ν of the methane gas is calculated to be 0.33 cm/s (the methane mass flow rate is 400 sccm and the diameter d of the furnace tube is 2 inches). We estimate that the Reynolds number (Re) of methane flow in the furnace tube is smaller than 10 using the formula Re=ρνd/η, where ρ is the density of methane gas (ρ =178g/m3 at 900°C and 1 atm), and η is the gas viscosity (η =1.8×10−5 kg/m-s). Also, the mean free path, λ, of methane molecules is very small compared to the tube diameter during growth (λ =5×10−3 cm for N2 at room temperature and 1 Torr). The Knudsen number is much smaller than 0.01. Thus, the gas flow can be modeled by continuum theory.
- 29.
Y. Hu, C. Werner, and D. Li, J. Fluids Eng. 125, 871–879 (2003).
Acknowledgments
Aspects of the research reviewed here that were performed at UW-Madison were supported in part by DOE and in part by NSF. Feng Liu’s work is supported by DOE.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Flack, F.S., Yang, B., Huang, M. et al. Pattern Formation on Silicon-on-Insulator. MRS Online Proceedings Library 854, U1.3/JJ1.3/KK1.3 (2004). https://doi.org/10.1557/PROC-854-U1.3/JJ1.3/KK1.3
Published: