Advanced Carbon-based Material as Space Radiation Shields


Carbon-based materials including microcrystalline diamond, nanocrystalline diamond, and carbon nanotubes films were prepared by microwave plasma-assisted chemical vapor deposition (MWCVD) technique. While the former were submitted to gamma radiation doses of 1, 5, and 20 Mrad, the latter to low energy electron beam of 30 keV or to 30 GeV/cm2) to study the radiation-induced structural transformation. The characterizations were performed prior to and after irradiation using Raman spectroscopy, scanning electron microscopy, and X-ray diffraction, techniques. Microcrystalline diamond showed a dramatic modification in the structural properties only after a cumulative dose of 26 Mrad (2 Grad/cm2), while nanocrystalline carbon showed a relatively small but systematic transformation with increasing gamma radiation dose. The results indicate that nanocrystalline carbon tends to reach a state of saturation when submitted to 26 Mrad doses of gamma radiation, suggesting the possibility of fabricating radiation buffer materials that would undergo internal sp3 ⇔ sp2 inter-conversion while absorbing ionizing radiation without changing their average microstructure and protecting the device/material underneath. Single- and multi-walled nanotubes exhibited structural modifications after 5.5-8 hrs of continuous exposure to electron beam. The variation in the characteristic X-ray peaks for multi-walled and single-walled corresponding to intertube spacing and the high frequency Raman band around 1580 cm−1 (G band) are reflected in their corresponding spectra. The results indicate that there is an increase in the intertube spacing for multi-walled nanotubes due to electron irradiation. While single-wall nanotubes tends to ‘collapse’ after > 8 hours of exposure forming multi-wall nanotubes analyzed using scanning electron microscopy and Raman spectroscopy. These C materials can be employed for preventing space radiation from reaching sensitive materials and electronic devices at least for short term experiments and entitled them as ‘space radiation shields’.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. E. Field, The Properties of Diamonds (Academic Press, London, 1979).

    Google Scholar 

  2. 2.

    S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian, and G. Morell, J. Appl. Phys. 92, 3311 (2002) and references therein.

    CAS  Article  Google Scholar 

  3. 3.

    B. Campbell and A. Mainwood, Phys. Status Solidi A 181, 99 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    F. Banhart, Rep. Prog. Phys. 62, 1181 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J. Li and F. Banhart, Nano Lett. 4, 1143 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    F. Banhart, Nano Lett. 1, 329 (2001); S. Gupta, N. D. Smith, R. J. Patel, and R. E. Giedd, Missouri Association of Physics Teachers (MAPT), Nov. 06, 2004 Springfield, MO; S. Gupta, N. D. Smith, and R. J. Patel, Appl. Phys. Lett. (Submitted Dec. 2004).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Y. Wang, S. Gupta, and R. J. Nemanich, Appl. Phys. Lett. 85, 2601 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    D. W. Marquardt, J. Soc. Indis. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  9. 9.

    B. Campbell and A. Mainwood, Phys. Status Solidi A 181, 99 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2001).

    Article  Google Scholar 

  11. 11.

    P. W. Levy and O. F. Kammerer, Phys. Rev. 100, 1787 (1955).

    CAS  Article  Google Scholar 

  12. 12.

    M. Zaiser and F. Banhart, Phys. Rev. Lett. 79, 3680 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, and R. E. Smalley, Science, 275, 187 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    A. Thess, et. al. Science, 273, 483 (1996).

    CAS  Google Scholar 

Download references


The author wish to acknowledge her collaborators including Dr. Brad R. Weiner (NASA Headquarters, Washington DC and Department of Chemistry - University of Puerto Rico), G. Morell (Department of Physical Sciences - University of Puerto Rico) for fruitful discussions, and Dr. R. J. Nemanich and Y. Y. Wang (Department of Physics - North Carolina State University) for supplying carbon nanotube samples used in the present study. We also thank the facilities housed in the Center of Applied Science and Engineering (CASE)–Jordan Valley Innovation Center (JVIC) directed by Dr. Ryan E. Giedd (SMSU).

Author information



Corresponding author

Correspondence to Sanju Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S., Patel, R.J. & Smith, N.D. Advanced Carbon-based Material as Space Radiation Shields. MRS Online Proceedings Library 851, 367–373 (2004).

Download citation