Skip to main content
Log in

Volume Relationships for C-S-H Formation Based on Hydration Stoichiometries

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Volume changes can be calculated from the hydration stoichiometry of C3S if the composition of C-S-H is taken as C1.7SH4.0 with a density of 1.85 g/cm3. The results are in general agreement with the volume changes determined by Powers. However, the calculated evaporable water content is higher and the space-limiting water-cement ratio is calculated to be 0.42. The calculations can be applied also to the pozzolanic reaction and predict a marked increase in solid volume. In that case the composition of C-S-H is modified to C1.5SH3.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Powers and T. L. Brownyard, J. Amer. Concr. Inst., 41, 101–132, 249–336, 469–504, 549–602, 669–712, 845–850, 933–992 (1946–47).

  2. T. C. Powers, Proc. Fourth Int. Symp. Chem. Cement, Washington 1960, II 577–609 (1962).

    Google Scholar 

  3. T. C. Powers, Chap 10 in The Chemistry of Cements, edited by H.F.W. Taylor (Academic Press, 1964) 1, pp. 391–416.

  4. F. W. Locher, in Symp. on Structure of Portland Cement Paste and Concrete, Special Report 90 (Highway Research Board, Washington, 1966) pp. 309–327.

  5. S. Brunauer and D. L. Kantro, Chap. 5 in The Chemistry of Cements, edited by H.F.W. Taylor (Academic Press, 1964) 1, pp. 287–309.

  6. H. E. Schwiete, Proc. 5th Int. Symp. Chem. Cement, Tokyo, 1968, II, 37–67 (1969).

    Google Scholar 

  7. R. L. Berger, F. V. Lawrence, and J. F. Young, Cem. Concr. Res., 3 497–508 (1973).

    Article  CAS  Google Scholar 

  8. H. F. W. Taylor and D. E. Newbury, Cem. Concr. Res., 14 93–98 (1984).

    Article  CAS  Google Scholar 

  9. W. Hansen, Ph.D. Thesis, Univ. Illinois (1983).

  10. R. F. Feldman and V. S. Ramachandran, Cem. Concr. Res., 1 607–620 (1971).

    Article  Google Scholar 

  11. J. F. Young, R. L. Berger and A. Bentur, Cemento, 75 391–398 (1978).

    CAS  Google Scholar 

  12. W. Hansen and J.A. Almudaiheem, this symposium.

  13. R.W Cranstan and F.A. Inkley, in Adv. Catalysis (Academic Press, 1957) 9 pp. 143–154.

  14. T. C. Powers, Mater. Constr. (Paris), 12 159–169 (1979).

    Article  Google Scholar 

  15. R. F. Feldman, World Cem. Technol., 3 5–14 (1972).

    CAS  Google Scholar 

  16. V. S, Ramachandran, Cem. Concr. Res., 9 677–684 (1979).

    Article  CAS  Google Scholar 

  17. E. S. Jons and B. Osbaeck, Cem. Concr. Res., 12 167–178 (1982).

    Article  CAS  Google Scholar 

  18. Z.-Q. Wu and J. F. Young, J. Mater. Sci., 19 3477–3486 (1984).

    Article  CAS  Google Scholar 

  19. K. Mohan and H.F.W. Taylor, in The Effects of Fly Ash Incorporation in Cement and Concrete, edited by S. Diamond, (MRS, Pittsburgh, 1981) p. 54.

  20. P. L. Rayment, Cem. Concr. Res., 12 133–140 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, J.F., Hansen, W. Volume Relationships for C-S-H Formation Based on Hydration Stoichiometries. MRS Online Proceedings Library 85, 313 (1986). https://doi.org/10.1557/PROC-85-313

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-85-313

Navigation