Preparation of Boron Carbide Nanoparticles by Carbothermal Reduction Method

Abstract

A carbothermal reaction process was employed to synthesize nano-sized boron carbide particles. The reactions were carried out by heating a mixture of boric oxide powder and amorphous carbon reactant under a flow of argon atmosphere in a conventional high temperature tube furnace at 1350–1700 °C for 1-4 h. In order to obtain stoichiometric powder product, additional pure boron powder was added to the reaction mixture to compensate for the boron loss in the form of B2O2/B2O3 vapor during the reaction. The effect of the structure and morphology of the precursor materials on that of the products was also investigated. X-ray diffraction (XRD) studies indicated that the powdered product prepared under optimized reaction conditions was crystalline boron carbide. Transmission electron microscopy (TEM) observations showed that the product nanoparticles ranged from 50 nm to 250 nm with the average size between 100 nm and 150 nm depending on the reaction conditions. Some boron carbide particles were as small as 50 nm. Energy dispersive spectroscopy (EDS) was also used to determine the stoichiometry of the boron carbide nanoparticle products.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Wood, D. Emin, Phys. Rev. B 29, 4582 (1984).

    CAS  Article  Google Scholar 

  2. 2.

    R. Telle, in: Structure and Properties of Ceramics, Materials Science and Technology, vol. 11, VCH publishers Weinheim, Germany (1994).

  3. 3.

    A. O. Sezer, J. I. Brand, Mat. Sci. Eng., B79, 191–202 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    A. Weimer, Carbide, Nitride, and Boride Materials Synthesis and Processing, Chapman and Hall, New York, (1997) ) pp. 7.

    Google Scholar 

  5. 5.

    F. Thevenot, J. Eur. Ceram. Soc. 6, 205 (1990).

    CAS  Article  Google Scholar 

  6. 6.

    M.T. Spohn, Am. Ceram. Soc. Bull. 72, 88, (1993).

    CAS  Google Scholar 

  7. 7.

    A. Sinha, T. Mahata, B.P. Sharma, J. Nucl. Mater. 301, 165 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    A.K. Knudsen, in: G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, R.A. Haber (Eds.), Ceramic Powder Science, Advances in Ceramics, Vol. 21, (American Ceramic Society Westerville, OH, 1987) pp. 237.

    Google Scholar 

  9. 9.

    F. Thevenot, in Advanced Ceramics, Key Engineering Materials, Vols. 56 and 57, Ed. C. Ganuly, S.K. Roy, P.R. Roy, (TransTech, Zurich, 1991) pp. 59.

    Article  Google Scholar 

  10. 10.

    A.W. Weimer, R.P. Roach, C.N. Haney, W.G. Moore, W. Rafaniello, AIChE Journal, 37, 759–68, (1991).

    CAS  Article  Google Scholar 

  11. 11.

    J.J. Scott, US Pat. No. 3 161 471 (1964).

  12. 12.

    L. Shi, Y. Cu, L. Chen, Y. Qian, Z. Yang, J. Ma, Solid State Communications 128, 5–7 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    K. Yamad, J. Am. Ceram. Soc., 79, 1113 (1996).

    Article  Google Scholar 

  14. 14.

    S. Chen, D.Z. Wang, J.Y. Huang, Z.F. Ren, Applied Physics A: Materials Science & Processing 79, 1757 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    K.A. Schwetz and A. Lipp, Ullman’s Encycl. Indust. Chem., A4 (1985) pp. 295–307.

    Google Scholar 

  16. 16.

    C. Jung, M. Lee, C. Kim, Materials Letters 58, 609–614 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Laszlo Kecskes and Samuel Hirsch of the Army Research Laboratory as well as Dr. Areti Tsiola of the Core Facilities of the Biology Department of Queens College and Daniel Klinger of the School of Earth and Environmental Sciences of Queens College for their assistance in facility access. The research was sponsored by a grant from the Army Research Office.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Baohe Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, B., Gersten, B., Adams, J.W. et al. Preparation of Boron Carbide Nanoparticles by Carbothermal Reduction Method. MRS Online Proceedings Library 848, 441–446 (2004). https://doi.org/10.1557/PROC-848-FF9.28

Download citation