Amorphous Nanowires and Crystalline Thin Films of SiO2-Li2O Compounds obtained by Combustion Chemical Vapor Deposition

Abstract

Amorphous silica films deposited by Combustion Chemical Vapor Deposition (CCVD) were modified by lithium addition in the precursor solution. The modified films were characterized by X-ray diffraction and scanning and transmission electron microscopy. The addition of lithium promoted the crystallization of Li2O-SiO2 compounds, mainly crystalline phases like Li2SiO3, Li2Si2O5, quartz and cristobalite. Besides that, the morphology of the film was modified, leading to the formation of acicular structures and nanowires. The acicular structures were identified through TEM associated with SAED as crystalline phases, mainly constituted by Li2SiO3 and Li2SiO5. TEM and SEM analysis indicated that the nanowire diameter is between 20 and 80nm. In addition to this, SAED and microprobe EDS analysis indicated that these nanowires are constituted by amorphous silica. The probable growth mechanism of these nanowires is the vapor-liquid-solid (VLS) catalyzed by a liquid particulate composed by Li2O-SiO2.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.T. Hunt, W.B. Carter, J.K. Cochran Jr., Appl. Phys. Letts. 63 (2) (1993) 266.

    CAS  Article  Google Scholar 

  2. 2.

    J.M. Hampikian, W.B. Carter, Materials Science and Engineering A267 (1999) 7–18.

    CAS  Article  Google Scholar 

  3. 3.

    Liu ZQ, Xie SS, Sun LF, Tang DS, Zhou WY, Wang CY, Liu W., Li YB, Zou XP, Wang G. J. Mater Res. 2001;16:683–6.

    CAS  Article  Google Scholar 

  4. 4.

    P.C. Soares Jr., E.D. Zanotto, V.M. Fokin, H. Jain, Journal of Non-Crystalline Solids 331 (2003) 217–227.

    CAS  Article  Google Scholar 

  5. 5.

    Christian Russel, Ralf Keding, Journal of Non-Crystalline Solids 328 (2003) 174–182.

    CAS  Article  Google Scholar 

  6. 6.

    Strnad Zdenek, Glass-ceramic materials: liquid phase separation, nucleation and crystallization in glasses, Amsterdam, Elsevier, 1986.

    Google Scholar 

  7. 7.

    Liu Z.Q., Xie S.S., Sun L.F., Tang D.S., Zhou W.Y., Wang C.Y., Liu W., Li Y.B., Zou X.P., Wang G. J. Mater. Res. 2001;16:683–6.

    CAS  Article  Google Scholar 

  8. 8.

    Pan Z.W., Dai Z.R., Ma C., Wang Z.L. J Am Chem Soc 2002;124:181 7–22.

    Google Scholar 

  9. 9.

    Zheng B., Wu Y., Yang P., Liu J. Adv. Mater. 2002;14:122–4.

    Article  Google Scholar 

  10. 10.

    D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, Appl. Phys. Lett. 73 (1998) 3076.

    CAS  Article  Google Scholar 

  11. 11.

    Ki-Hong Lee, Hyuck Soo Yang, Kwang Hyeon Baik, Jungsik Bang, Richard R. Vanfleet, Wolfgang Sigmund, Chemical Physics Letters 383 (2004) 380–384.

    CAS  Article  Google Scholar 

  12. 12.

    J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee, S.T. Lee, Chemical Physics Letters 367 (2003) 339–343.

    CAS  Article  Google Scholar 

  13. 13.

    Yingjiu Zhang, Nanlin Wang, Rongrui He, Jun Liu, Xiaozhong Zhang, Jing Zhu, Journal of Crystal Growth 233 (2001) 803–808.

    CAS  Article  Google Scholar 

  14. 14.

    X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J.J. Du, Chem. Phys. Letters, 336 (2001) 53–56.

    CAS  Article  Google Scholar 

  15. 15.

    S. Clausb, H. Kleykamp, W. Smykatz-Kloss, Journal of Nuclear Materials 230 (1996) 8–11.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of the LACER (Ceramics Materials Laboratory) for their contribution to the development of this study, and to the Centro de Microscopia Eletrônica da UFRGS, that made the SEM and TEM analysis possible.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. D. Lima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lima, M.D., Stein, S., de Andrade, M. et al. Amorphous Nanowires and Crystalline Thin Films of SiO2-Li2O Compounds obtained by Combustion Chemical Vapor Deposition. MRS Online Proceedings Library 848, 429–434 (2004). https://doi.org/10.1557/PROC-848-FF9.26

Download citation